JavaShuo
栏目
标签
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
时间 2020-12-29
标签
机器学习
深度学习
栏目
无线
繁體版
原文
原文链接
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatics阅读笔记 文献背景及解决问题 车联网中的联邦学习 具体方案 总结与思考 文献背景及解决问题 由于无线网络带宽和计算资源的限制,车辆很难使用大量数据来进行提高服务质量的机器学习,比如自动驾驶和交通预测
>>阅读原文<<
相关文章
1.
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
2.
论文笔记——Federated learning framework for mobile edge computing networks
3.
Federated Learning in Mobile Edge Networks: AComprehensive Survey(翻译)
4.
Differentially Private Federated Learning: A Client Level Perspective
5.
论文笔记——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
6.
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
7.
Deployment Characteristics of "The Edge" in Mobile Edge Computing
8.
【论文阅读】Edge Computing Architecture for Mobile Crowdsensing
9.
Incentive Design for Efficient Federated Learning in Mobile Networks: A Contract Theory Approach
10.
Edge Computing
更多相关文章...
•
Swift for-in 循环
-
Swift 教程
•
Lua for 循环
-
Lua 教程
•
Java Agent入门实战(三)-JVM Attach原理与使用
•
Java Agent入门实战(一)-Instrumentation介绍与使用
相关标签/搜索
for...in
for..in
for.....in
computing
asynchronous
urban
differentially
federated
edge
private
无线
jQuery Mobile 教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
windows下配置opencv
2.
HED神经网
3.
win 10+ annaconda+opencv
4.
ORB-SLAM3系列-多地图管理
5.
opencv报错——(mtype == CV_8U || mtype == CV_8S)
6.
OpenCV计算机视觉学习(9)——图像直方图 & 直方图均衡化
7.
【超详细】深度学习原理与算法第1篇---前馈神经网络,感知机,BP神经网络
8.
Python数据预处理
9.
ArcGIS网络概述
10.
数据清洗(三)------检查数据逻辑错误
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
2.
论文笔记——Federated learning framework for mobile edge computing networks
3.
Federated Learning in Mobile Edge Networks: AComprehensive Survey(翻译)
4.
Differentially Private Federated Learning: A Client Level Perspective
5.
论文笔记——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
6.
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
7.
Deployment Characteristics of "The Edge" in Mobile Edge Computing
8.
【论文阅读】Edge Computing Architecture for Mobile Crowdsensing
9.
Incentive Design for Efficient Federated Learning in Mobile Networks: A Contract Theory Approach
10.
Edge Computing
>>更多相关文章<<