JavaShuo
栏目
标签
Incentive Design for Efficient Federated Learning in Mobile Networks: A Contract Theory Approach
时间 2020-08-08
标签
incentive
design
efficient
federated
learning
mobile
networks
contract
theory
approach
栏目
无线
繁體版
原文
原文链接
论文解读:html 背景 开销和隐私两大problems 移动网络在计算和通讯两方面有极大的开销,若是没有激励机制,那么感兴趣的移动设备就不肯意加入联邦学习任务web 以往的假设是认为全部的移动设备都会在被邀请时无条件的参与联邦学习,可是没有精心设计的补偿,自私自利的移动设备将不肯意参与网络 两个信息不对成 1.任务发布者不知道用于模型训练的资源量和数据大小 2.不知道移动设备的数据质量 致使:
>>阅读原文<<
相关文章
1.
Federated Learning in Mobile Edge Networks: AComprehensive Survey(翻译)
2.
An Efficient Deep Learning Approach for Collaborative Filtering Recommender System
3.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
4.
Geoffrey Hinton's Capsule Networks: A Novel Approach to Deep Learning
5.
论文笔记——Federated learning framework for mobile edge computing networks
6.
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
7.
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
8.
论文笔记——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
9.
Paper Reading:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
10.
论文泛读 A Novel Ensemble Learning-based Approach for Click Fraud Detection in Mobile Advertising [1/10]
更多相关文章...
•
Swift for-in 循环
-
Swift 教程
•
Lua for 循环
-
Lua 教程
•
Java Agent入门实战(一)-Instrumentation介绍与使用
•
Java Agent入门实战(三)-JVM Attach原理与使用
相关标签/搜索
for...in
for..in
for.....in
networks
contract
efficient
incentive
federated
theory
approach
无线
jQuery Mobile 教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
添加voicebox
2.
Java 8u40通过Ask广告软件困扰Mac用户
3.
数字图像处理入门[1/2](从几何变换到图像形态学分析)
4.
如何调整MathType公式的字体大小
5.
mAP_Roi
6.
GCC编译器安装(windows环境)
7.
LightGBM参数及分布式
8.
安装lightgbm以及安装xgboost
9.
开源matpower安装过程
10.
从60%的BI和数据仓库项目失败,看出从业者那些不堪的乱象
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Federated Learning in Mobile Edge Networks: AComprehensive Survey(翻译)
2.
An Efficient Deep Learning Approach for Collaborative Filtering Recommender System
3.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
4.
Geoffrey Hinton's Capsule Networks: A Novel Approach to Deep Learning
5.
论文笔记——Federated learning framework for mobile edge computing networks
6.
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
7.
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
8.
论文笔记——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
9.
Paper Reading:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
10.
论文泛读 A Novel Ensemble Learning-based Approach for Click Fraud Detection in Mobile Advertising [1/10]
>>更多相关文章<<