求1到n这n个整数间的异或值 (O(1)算法)

 

 

问题:求1nn个整数间的异或值,即 1 xor 2 xor 3 ... xor npost

 

记 f(x, y) 为x到y的全部整数的异或值。blog

 

对 f(2^k, 2^(k+1) -1) (注意文章中的 ^ 表示的是“幂”,xor 表示“异或”,or 表示“或”):get

2^k 到 2^(k+1) -1 这2^k个数,最高位(+k位)的1个数为2^k,it

若 k >= 1,则2^k为偶数,将这2^k个数的最高位(+k位)去掉,异或值不变。class

于是 f(2^k, 2^(k+1) -1) = f(2^k - 2^k, 2^(k+1) -1 -2^k) = f(0, 2^k -1)协议

于是 f(0, 2^(k+1) -1) = f(0, 2^k -1) xor f(2^k, 2^(k+1) -1) = 0 (k >= 1)di

即 f(0, 2^k - 1) = 0 (k >= 2)co

 

对 f(0, n)  (n >= 4) 设n的最高位1是在+k位(k >= 2),return

f(0, n) = f(0, 2^k - 1) xor f(2^k, n) = f(2^k, n)tar

对2^k到n这n+1-2^k个数,最高位(+k位)共有 m = n+1-2^k 个1,去除最高位的1

 

当n为奇数时,m是偶数,于是 f(0, n) = f(2^k, n) = f(0, n - 2^k)

因为n - 2^k 与 n同奇偶,递推上面的公式,可得:f(0, n) = f(0, n % 4)

当 n % 4 == 1 时, f(0, n) = f(0, 1) = 1

当 n % 4 == 3 时, f(0, n) = f(0, 3) = 0

 

当n为偶数时,m是奇数,于是 f(0, n) = f(2^k, n) = f(0, n - 2^k)  or  2^k

也就是说,最高位1保持不变,因为n - 2^k 与 n同奇偶,递推上面的公式,

可得:f(0, n) = nn or  f(0, n % 4)   (nn为 n的最低2位置0)

当 n % 4 == 0 时, f(0, n) = n

当 n % 4 == 2 时, f(0, n) = nn or  3 = n + 1 (公式对 n = 2仍成立)

 

综上所述:

f(1, n)  =  f(0, n)  =

   n      n % 4 == 0

   1      n % 4 == 1

   n +1   n % 4 == 2

0      n % 4 == 3

 

代码:

unsigned xor_n(unsigned n)

{

 unsigned t = n & 3;

 if (& 1) return t / 2u ^ 1;

 return t / 2u ^ n;

}


做者:  flyinghearts 
出处:  http://www.cnblogs.com/flyinghearts/ 
本文采用 知识共享署名-非商业性使用-相同方式共享 2.5 中国大陆许可协议进行许可,欢迎转载,但未经做者赞成必须保留此段声明,且在文章页面明显位置给出原文链接,不然保留追究法律责任的权利。
相关文章
相关标签/搜索