本文以三维向量来讲明向量的叉乘计算原理以及叉乘矩阵如何求取blog
一、向量叉乘的计算原理原理
a、b分别为三维向量:bfc
a叉乘b通常定义为:扩展
或
方法
但是这只是一个符号的定义啊,具体怎么获得代数值呢im
关键方法就是引入单位坐标向量,d3
这里用i j k来表示三维坐标轴,这里只是举例,能够扩展到更多维,只是比较抽象db
a、经过引入单位向量,向量就能够转化为代数形式:img
b、定义单位向量间的运算规则ant
c、计算叉乘
二、计算叉乘矩阵
把叉乘结果写成向量的形式:
变换形式获得叉乘矩阵:
其中称为a向量的叉乘矩阵。
三、高维向量求取叉乘矩阵
对于三维和三维如下向量的叉乘计算和叉乘矩阵的求取经过定义单位向量间的运算规则能够计算获得。
对于高维向量,这种方法显得有些繁琐不易理解且容易出错。
下面介绍另一种方法,先举个二维的例子:
假设向量a是一个二维的向量(这里只使用二维是为了让例子容易理解)
这里引入一个反对称(anti-symmetric)矩阵H:
经过计算,发现结果为0
由叉乘的规则,a叉乘a的结果为0:
经过对比,能够发现 aH 就是a向量的叉乘矩阵,当a为列向量时为a向量的叉乘矩阵。
若是a为三维向量,那么H为:
能够发现H就是由一个个反对称矩阵构成。
若是向量a的维数为 p ,那 H 就有 个子矩阵。
四、扩展
对于向量的点乘、四元数乘法均可以经过定义单位向量 i j k…之间的运算规则来推导。