稀疏表示分类(SRC)

目前已有很多方法和技术用于构造分类模型,如决策树、神经网络、贝叶斯方法、Fisher线性分析(Fld)以及支持向量机(Support Vector Machine, SVM)。 基于超完备字典的信号稀疏分解是一种新的信号表示理论,其采用超完备的冗余函数系统代替传统的正交基函数,为信号自适应的稀疏扩展提供了极大的灵活性。稀疏分解可以实现数据压缩的高效性,更重要的是可以利用字典的冗余特性捕捉信号内在的
相关文章
相关标签/搜索