TADAM:Task dependent adaptive metric for improved few-shot learning

本文基于度量学习,发现简单的度量尺度会完全改变少样本学习参数更新的本质,同时提出了一个简单且有效的任务依赖的度量空间学习方法,可以根据不同的任务进行特征提取。通过度量缩放的方式,作者将余弦相似度与欧拉距离在少样本学习上的差距缩小了10%,也就是说度量的选择没有那么重要。另外,还提出了辅助任务协同训练,使得具有任务依赖性的特征提取更容易训练,并且具有很好的泛化能力 背景 考虑episodic形式的K
相关文章
相关标签/搜索