在机器学习中如何应对不均衡分类问题?

在处理机器学习等数据科学问题时,经常会碰到不均衡种类分布的情况,即在样本数据中一个或多个种类的观察值明显少于其他种类的观察值的现象。在我们更关心少数类的问题时这个现象会非常突出,例如窃电问题、银行诈骗性交易、罕见病鉴定等。在这种情况下,运用常规的机器学习算法的预测模型可能会无法准确预测。这是因为机器学习算法通常是通过减少错误来增加准确性,而不考虑种类的平衡。这篇文章讲了不同的方法来解决这个不均衡分
相关文章
相关标签/搜索