机器学习第二回总结——多变量线性回归

一.多特征量情况下的假设形式 对图片上的知识点进行剖析:x与θ都是向量,将x0设为1,便可以用θ的转置与x向量的内积来简单表示h(x)——>多元线性回归 二.如何设定假设的参数【使用梯度下降法来处理多元线性回归】 将θ和J(θ)都看作向量,重新定义我们上节课学习那几个概念。 梯度下降法的多元表达 其实与之前我们学的内容还是很相似的,每一次的更新过程依旧是独立的,在导数项中,重新定义了x变量的下标
相关文章
相关标签/搜索