ML - DBSCAN

密度聚类:desity-based clustering 此类算法假设聚类结构能通过样本分布的紧密程度确定。通常情形下,密度聚类算法从样本的密度的角度来考察样本之间的可连接性,并基于可连接样本不断扩展聚类簇以获得最终的聚类结果。 DBSCAN是著名的密度聚类算法。它常常用于异常检测,他的注意力放在离群点上,所以,当遇到无监督的检测任务时,他是首选。 一些概念 DBSCAN: 基 于 一 组 邻 域
相关文章
相关标签/搜索