JavaShuo
栏目
标签
(Review cs231n) Optimized Methods
时间 2020-12-30
原文
原文链接
Mini-batch SGD的步骤: 1.Sample a batch of data 2.Forward prop it through the graph,get loss 3.backprop to calculate the gradient 4. updata the parameters using the gradient The initialization of weights
>>阅读原文<<
相关文章
1.
(Review cs231n) Object Detection
2.
(Review cs231n) Gradient Vectorized
3.
(Review cs231n)loss function and optimization
4.
(Review cs231n) BN and Activation Function
5.
A review of gradient descent optimization methods
6.
CS231n Lecture 15 | Efficient Methods and Hardware for Deep Learning
7.
(Review cs231n) Spatial Localization and Detection(classification and localization)
8.
(Review cs231n) The Gradient Calculation of Neural Network
9.
【CRR-FMM】A Concise Review of Recent Few-shot Meta-learning Methods
10.
solr的Optimized
更多相关文章...
•
Docker 安装 MySQL
-
Docker教程
•
R Excel 文件
-
R 语言教程
相关标签/搜索
methods
cs231n
review
optimized
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
gitlab4.0备份还原
2.
openstack
3.
深入探讨OSPF环路问题
4.
代码仓库-分支策略
5.
Admin-Framework(八)系统授权介绍
6.
Sketch教程|如何访问组件视图?
7.
问问自己,你真的会用防抖和节流么????
8.
[图]微软Office Access应用终于启用全新图标 Publisher已在路上
9.
微软准备淘汰 SHA-1
10.
微软准备淘汰 SHA-1
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
(Review cs231n) Object Detection
2.
(Review cs231n) Gradient Vectorized
3.
(Review cs231n)loss function and optimization
4.
(Review cs231n) BN and Activation Function
5.
A review of gradient descent optimization methods
6.
CS231n Lecture 15 | Efficient Methods and Hardware for Deep Learning
7.
(Review cs231n) Spatial Localization and Detection(classification and localization)
8.
(Review cs231n) The Gradient Calculation of Neural Network
9.
【CRR-FMM】A Concise Review of Recent Few-shot Meta-learning Methods
10.
solr的Optimized
>>更多相关文章<<