JavaShuo
栏目
标签
(Review cs231n) Optimized Methods
时间 2020-12-30
原文
原文链接
Mini-batch SGD的步骤: 1.Sample a batch of data 2.Forward prop it through the graph,get loss 3.backprop to calculate the gradient 4. updata the parameters using the gradient The initialization of weights
>>阅读原文<<
相关文章
1.
(Review cs231n) Object Detection
2.
(Review cs231n) Gradient Vectorized
3.
(Review cs231n)loss function and optimization
4.
(Review cs231n) BN and Activation Function
5.
A review of gradient descent optimization methods
6.
CS231n Lecture 15 | Efficient Methods and Hardware for Deep Learning
7.
(Review cs231n) Spatial Localization and Detection(classification and localization)
8.
(Review cs231n) The Gradient Calculation of Neural Network
9.
【CRR-FMM】A Concise Review of Recent Few-shot Meta-learning Methods
10.
solr的Optimized
更多相关文章...
•
Docker 安装 MySQL
-
Docker教程
•
R Excel 文件
-
R 语言教程
相关标签/搜索
methods
cs231n
review
optimized
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
[最佳实践]了解 Eolinker 如何助力远程办公
2.
katalon studio 安装教程
3.
精通hibernate(harness hibernate oreilly)中的一个”错误“
4.
ECharts立体圆柱型
5.
零拷贝总结
6.
6 传输层
7.
Github协作图想
8.
Cannot load 32-bit SWT libraries on 64-bit JVM
9.
IntelliJ IDEA 找其历史版本
10.
Unity3D(二)游戏对象及组件
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
(Review cs231n) Object Detection
2.
(Review cs231n) Gradient Vectorized
3.
(Review cs231n)loss function and optimization
4.
(Review cs231n) BN and Activation Function
5.
A review of gradient descent optimization methods
6.
CS231n Lecture 15 | Efficient Methods and Hardware for Deep Learning
7.
(Review cs231n) Spatial Localization and Detection(classification and localization)
8.
(Review cs231n) The Gradient Calculation of Neural Network
9.
【CRR-FMM】A Concise Review of Recent Few-shot Meta-learning Methods
10.
solr的Optimized
>>更多相关文章<<