展转相除法求最大公约数——[js练习]

题目背景

约数

若是数 a 能被数 b 整除,a 就叫作 b 的倍数,b 就叫作 a 的约数javascript

最大公约数

最大公约数就是两个数中,你们都能相约且最大的数。java

展转相除法

展转相除法又名欧几里得算法(Euclidean algorithm),目的是求出两个正整数的最大公约数。它是已知最古老的算法,其可追溯至公元前300年前。算法

这条算法基于一个定理:两个正整数 a 和 b(a 大于 b),它们的最大公约数等于 a 除以 b 的余数 c 和 较小数 b 之间的最大公约数。ide

算法计算过程是这样的:函数

  • 2个数相除,得出余数
  • 若是余数不为0,则拿较小的数与余数继续相除,判断新的余数是否为0
  • 若是余数为0,则最大公约数就是本次相除中较小的数。

好比数字 25 和 10 ,使用展转相除法求最大公约数过程以下:idea

  • 25 除以 10 商 2 余 5
  • 根据展转相除法能够得出,25 和 10 的最大公约数等于 5 和 10 之间的最大公约数
  • 10 除以 5 商 2 余 0, 因此 5 和 10 之间的最大公约数为 5,所以25 和 10 的最大公约数为 5

题目要求

完善函数 gcd 的功能。函数 gcd 会计算并返回传入的两个正整数参数之间最大的公约数spa

以下所示:code



gcd(30,3); // 返回结果为 3 gcd(12, 24); // 返回结果为 12 gcd(111, 11); // 返回结果为 1
function gcd(num1,num2){
    var remainder = 0;
    do{
       remainder = num1 % num2;
       num1 = num2;
       num2 = remainder;
    }while(remainder!==0);
    return num1;
}

console.log(gcd(24,12));

实现展转相除法一般有两种思路,分别以下blog

一、使用循环实现

function gcd(number1, number2){
  // 建立一个表示余数的变量
  var remainder = 0;
  // 经过循环计算
  do {
    // 更新当前余数
    remainder = number1 % number2;
    // 更新数字1
    number1 = number2; 
    // 更新数字1
    number2 = remainder;
  } while(remainder !== 0);
  return number1;
}

 

二、使用函数递归

function gcd(number1, number2) { 
  if (number2 == 0) {
    return number1; 
  } else {
    return gcd(number2, number1 % number2); 
  }
}

更多关于递归:https://msdn.microsoft.com/zh-cn/library/wwbyhkx4.aspx递归

相关文章
相关标签/搜索