supervisor启动worker源码分析-worker.clj

supervisor经过调用sync-processes函数来启动worker,关于sync-processes函数的详细分析请参见"storm启动supervisor源码分析-supervisor.clj"。sync-processes函数代码片断以下:java

sync-processes函数代码片断node

;; sync-processes函数用于管理workers, 好比处理不正常的worker或dead worker, 并建立新的workers
;; supervisor标识supervisor的元数据
(defn sync-processes [supervisor]
                .
            .
            .
              ;; 忽略了部分代码
              .
              .
              .
       (wait-for-workers-launch
            conf
            (dofor [[port assignment] reassign-executors]
              (let [id (new-worker-ids port)]
                (log-message "Launching worker with assignment "
                             (pr-str assignment)
                             " for this supervisor "
                             (:supervisor-id supervisor)
                             " on port "
                             port
                             " with id "
                             id
                             )
                ;; launch-worker函数负责启动worker              
                (launch-worker supervisor
                               (:storm-id assignment)
                               port
                               id)
                id)))
  ))

sync-processes函数调用launch-worker函数启动worker,launch-worker函数是一个"多重函数",定义以下:
宏defmulti和defmethod常常被用在一块儿来定义multimethod-"多重函数"。宏defmulti的参数包括一个方法名以及一个dispatch函数,这个dispatch函数的返回值会被用来选择到底调用哪一个重载的函数。宏defmethod的参数则包括方法名,dispatch的值,参数列表以及方法体。一个特殊的dispatch值:default 是用来表示默认状况的—即若是其它的dispatch值都不匹配的话,那么就调用这个方法。defmethod定义名字相同的方法,它们的参数个数必须同样。传给multimethod的参数会传给dipatch函数。实现相似java的重载shell

launch-worker函数数组

( defmulti launch-worker ( fn [ supervisor & _ ] ( cluster-mode ( :conf supervisor))))

 

;; 若是dispatch函数的返回值为关键字:distributed,即storm集群运行在分布式模式下,则执行该方法
( defmethod launch-worker
    ;; supervisor标识supervisor的元数据,storm-id标识该worker所属的topology,port标识该worker占用的端口号,worker-id是一个32位的uuid,用于标识worker
    :distributed [ supervisor storm-id port worker-id ]
    ;; conf绑定集群配置信息
   ( let [ conf ( :conf supervisor)
          ;; storm-home绑定storm本地安装路径
          storm-home ( System/getProperty "storm.home")
          ;; storm-log-dir绑定日志路径
          storm-log-dir ( or ( System/getProperty "storm.log.dir") ( str storm-home "/logs"))
          ;; stormroot绑定supervisor本地路径"{storm.local.dir}/supervisor/stormdist/{storm-id}"
          stormroot ( supervisor-stormdist-root conf storm-id)
          ;; jlp绑定运行时所依赖的本地库的路径,jlp函数生成本地库路径,参见jlp函数定义部分
          jlp ( jlp stormroot conf)
          ;; stormjar绑定stormjar.jar文件的路径"{storm.local.dir}/supervisor/stormdist/{storm-id}/stormjar.jar"
          stormjar ( supervisor-stormjar-path stormroot)
          ;; storm-conf绑定集群配置信息和storm-id配置信息的并集
          storm-conf ( read-supervisor-storm-conf conf storm-id)
          ;; topo-classpath绑定storm-id的classpath集合
          topo-classpath ( if-let [ cp ( storm-conf TOPOLOGY-CLASSPATH )]
                          [ cp ]
                          [])
          ;; 将stormjar和topo-classpath所标识的路径添加到Java的classpath中                
          classpath ( -> ( current-classpath)
                       ( add-to-classpath [ stormjar ])
                       ( add-to-classpath topo-classpath))
          ;; 从集群配置信息中获取默认状况下supervisor启动worker的jvm参数              
          worker-childopts ( when-let [s ( conf WORKER-CHILDOPTS )]
                            ( substitute-childopts s worker-id storm-id port))
          ;; 从topology的配置信息中获取为该topology的worker指定的jvm参数                
          topo-worker-childopts ( when-let [s ( storm-conf TOPOLOGY-WORKER-CHILDOPTS )]
                                 ( substitute-childopts s worker-id storm-id port))
          ;; 将该topology特有的依赖库路径合并到jlp中,这样topology-worker-environment绑定的map中就包含了启动该topology的worker所需的全部的依赖库                                  
          topology-worker-environment ( if-let [ env ( storm-conf TOPOLOGY-ENVIRONMENT )]
                                       ( merge env { "LD_LIBRARY_PATH" jlp })
                                        { "LD_LIBRARY_PATH" jlp })
          ;; 生成该worker的日志文件worker-{port}.log                              
          logfilename ( str "worker-" port ".log")
          ;; command绑定一个Java -server xxxxxx -cp classpath classname arg_0 arg_1 ... arg_n命令,xxxxxx表示传递给java命令的jvm参数
          command ( concat
                    [( java-cmd) "-server" ]
                    worker-childopts
                    topo-worker-childopts
                    [( str "-Djava.library.path=" jlp)
                    ( str "-Dlogfile.name=" logfilename)
                    ( str "-Dstorm.home=" storm-home)
                    ( str "-Dstorm.log.dir=" storm-log-dir)
                    ( str "-Dlogback.configurationFile=" storm-home "/logback/cluster.xml")
                    ( str "-Dstorm.id=" storm-id)
                    ( str "-Dworker.id=" worker-id)
                    ( str "-Dworker.port=" port)
                    "-cp" classpath
                    "backtype.storm.daemon.worker"
                    storm-id
                    ( :assignment-id supervisor)
                    port
                    worker-id ])
          ;; 去掉command命令数组中的空值
          command ( ->> command ( map str) ( filter ( complement empty?)))
          ;; 获取command命令数组的字符串形式
          shell-cmd ( ->> command
                        ( map #( str \' ( clojure.string/escape % { \' "\\'" }) \'))
                        ( clojure.string/join " " ))]
     ( log-message "Launching worker with command: " shell-cmd)
      ;; 经过ProcessBuilder类来执行command命令,即执行java命令运行backtype.storm.daemon.worker类的main方法建立一个新的进程,传递给main方法的参数为storm-id,supervisor-id,port和worker-id
      ;; 关于backtype.storm.daemon.worker类的main方法请参见其定义部分
     ( launch-process command :environment topology-worker-environment)
     ))

;; 若是dispatch函数的返回值为关键字:local,即storm集群运行在本地模式下,则执行该方法      
( defmethod launch-worker
    :local [ supervisor storm-id port worker-id ]
   ( let [ conf ( :conf supervisor)
          pid ( uuid)
          worker ( worker/mk-worker conf
                                  ( :shared-context supervisor)
                                  storm-id
                                  ( :assignment-id supervisor)
                                  port
                                  worker-id )]
     ( psim/register-process pid worker)
     ( swap! ( :worker-thread-pids-atom supervisor) assoc worker-id pid)
     ))

jlp函数定义以下:缓存

;; stormroot绑定supervisor本地路径"{storm.local.dir}/supervisor/stormdist/{storm-id}",conf绑定集群配置
( defn jlp [ stormroot conf ]
  ;; resource-root绑定supervisor本地路径"{storm.local.dir}/supervisor/stormdist/{storm-id}/resources"
 ( let [ resource-root ( str stormroot File/separator RESOURCES-SUBDIR)
          ;; os绑定supervisor服务器的操做系统名
        os ( clojure.string/replace ( System/getProperty "os.name") # "\s+" "_")
        ;; arch绑定操做系统的架构,如"x86"和"i386"
        arch ( System/getProperty "os.arch")
        ;; arch-resource-root绑定路径"{storm.local.dir}/supervisor/stormdist/{storm-id}/resources/{os}-{arch}"
        arch-resource-root ( str resource-root File/separator os "-" arch )]
    ;; 返回"{storm.local.dir}/supervisor/stormdist/{storm-id}/resources/{os}-{arch}:{storm.local.dir}/supervisor/stormdist/{storm-id}/resources:{java.library.path}"
   ( str arch-resource-root File/pathSeparator resource-root File/pathSeparator ( conf JAVA-LIBRARY-PATH))))

read-supervisor-storm-conf函数定义以下:安全

;; 从supervisor本地路径"{storm.local.dir}/supervisor/stormdist/stormconf.ser"读取topology运行配置信息
( defn read-supervisor-storm-conf
  [ conf storm-id ]
  ;; stormroot绑定目录路径"{storm.local.dir}/supervisor/stormdist"
 ( let [ stormroot ( supervisor-stormdist-root conf storm-id)
        ;; conf-path绑定文件路径"{storm.local.dir}/supervisor/stormdist/stormconf.ser"
        conf-path ( supervisor-stormconf-path stormroot)
        ;; topology-path绑定文件路径"{storm.local.dir}/supervisor/stormdist/stormcode.ser"
        topology-path ( supervisor-stormcode-path stormroot )]
    ;; 返回集群配置信息和topology配置信息合并后的配置信息map
   ( merge conf ( Utils/deserialize ( FileUtils/readFileToByteArray ( File. conf-path))))
   ))

backtype.storm.daemon.worker类定义在worker.clj文件中,经过:gen-class生成一个lava类,其main方法以下:服务器

( defn -main [ storm-id assignment-id port-str worker-id ]  
  ;; 读取storm集群配置信息
 ( let [ conf ( read-storm-config )]
    ;; 验证配置信息
   ( validate-distributed-mode! conf)
    ;; 调用mk-worker函数,mk-worker函数请参见其定义部分
   ( mk-worker conf nil storm-id assignment-id ( Integer/parseInt port-str) worker-id)))

mk-worker函数:架构

;; conf绑定集群配置信息,shared-mq-context绑定共享mq,storm-id标识topology-id,assignment-id标识supervisor-id
( defserverfn mk-worker [ conf shared-mq-context storm-id assignment-id port worker-id ]
 ( log-message "Launching worker for " storm-id " on " assignment-id ":" port " with id " worker-id
              " and conf " conf)
  ;; 若是storm不是"本地模式"运行(即"分布式模式"运行),则将标准输入输出流重定向到slf4j
 ( if-not ( local-mode? conf)
   ( redirect-stdio-to-slf4j!))
  ;; because in local mode, its not a separate
  ;; process. supervisor will register it in this case
  ;; 若是storm是"分布式模式"运行,则在supervisor服务器本地建立文件"{storm.local.dir}/workers/{worker-id}/pids/{process-pid}",process-pid函数主要功能就是获取jvm进程的id
  ;; 须要特别注意的是worker-id是咱们人为分配给该进程的一个标识,建立进程时,咱们没法指定一个jvm进程的id,进程id是由操做系统分配的,因此咱们须要获取该进程的实际id,并将咱们指定的worker-id与进程id进行关联
 ( when ( = :distributed ( cluster-mode conf))
   ( touch ( worker-pid-path conf worker-id ( process-pid))))
  ;; worker绑定该进程的"元数据",worker-data函数的主要功能就是生成进程的"元数据",worker-data函数请参见其定义部分
 ( let [ worker ( worker-data conf shared-mq-context storm-id assignment-id port worker-id)
              ;; heartbeat-fn绑定一个匿名函数,该匿名函数的功能就是生成worker"本地心跳信息",这里至关定义了heartbeat-fn函数,do-heartbeat函数请参见其定义部分
        heartbeat-fn #( do-heartbeat worker)

        ;; do this here so that the worker process dies if this fails
        ;; it's important that worker heartbeat to supervisor ASAP when launching so that the supervisor knows it's running (and can move on)
        ;; 调用heartbeat-fn函数将worker进程心跳信息保存到本地LocalState对象中
        _ ( heartbeat-fn)
        ;; 定义一个原子类型的引用executors
        executors ( atom nil)
        ;; launch heartbeat threads immediately so that slow-loading tasks don't cause the worker to timeout
        ;; to the supervisor
        ;; 将heartbeat-fn函数添加到定时器heartbeat-timer中,延迟执行时间为0s,每隔WORKER-HEARTBEAT-FREQUENCY-SECS执行一次
        _ ( schedule-recurring ( :heartbeat-timer worker) 0 ( conf WORKER-HEARTBEAT-FREQUENCY-SECS) heartbeat-fn)
        ;; 将#(do-executor-heartbeats worker :executors @executors)函数添加到定时器executor-heartbeat-timer中,延迟执行时间为0s,每隔TASK-HEARTBEAT-FREQUENCY-SECS执行一次
        ;; 这样就能够将worker进程心跳信息同步到zookeeper中, 以便nimbus能够马上知道worker进程已经启动,do-executor-heartbeats函数请参见其定义部分
        _ ( schedule-recurring ( :executor-heartbeat-timer worker) 0 ( conf TASK-HEARTBEAT-FREQUENCY-SECS) #( do-executor-heartbeats worker :executors @ executors))

        ;; 更新发送connections,mk-refresh-connections函数请参见其定义部分
        refresh-connections ( mk-refresh-connections worker)
          ;; 主动调用refresh-connections函数refresh该worker进程所拥有的connections,而且不向zookeeper注册回调函数
        _ ( refresh-connections nil)
          ;; 调用refresh-storm-active函数refresh该worker进程缓存的所属topology的活跃状态,refresh-storm-active函数请其参见定义部分
        _ ( refresh-storm-active worker nil)
          ;; 调用mk-executor函数生成executor对象,保存到executors集合中。关于executor对象的建立将会在之后文章中具体分析
        _ ( reset! executors ( dofor [ e ( :executors worker )] ( executor/mk-executor worker e)))
        ;; 启动worker进程专有的接收线程,将数据从worker进程的侦听端口,不停的放到task对应的接收队列,receive-thread-shutdown绑定该接收线程的关闭函数。launch-receive-thread函数请参见其定义部分
        receive-thread-shutdown ( launch-receive-thread worker)
       
        ;; 定义event handler来处理transfer queue里面的数据。关于消息处理的流程会在之后文章中具体分析
        transfer-tuples ( mk-transfer-tuples-handler worker)
       
        ;; 建立transfer-thread。关于消息处理的流程会在之后文章中具体分析
        transfer-thread ( disruptor/consume-loop* ( :transfer-queue worker) transfer-tuples)
        ;; 定义worker进程关闭回调函数,当关闭worker进程时调用该函数释放worker进程所占有的资源
        shutdown* ( fn []
                   ( log-message "Shutting down worker " storm-id " " assignment-id " " port)
                    ;; 关闭该worker进程到其余worker进程的链接
                   ( doseq [[ _ socket ] @( :cached-node+port->socket worker )]
                      ;; this will do best effort flushing since the linger period
                      ;; was set on creation
                     ( .close socket))
                   ( log-message "Shutting down receive thread")
                    ;; 调用receive-thread-shutdown函数关闭该worker进程的接收线程
                   ( receive-thread-shutdown)
                   ( log-message "Shut down receive thread")
                   ( log-message "Terminating messaging context")
                   ( log-message "Shutting down executors")
                    ;; 关闭该worker进程所拥有的executor
                   ( doseq [ executor @ executors ] ( .shutdown executor))
                   ( log-message "Shut down executors")
                                       
                    ;;this is fine because the only time this is shared is when it's a local context,
                    ;;in which case it's a noop
                    ;; 关闭该worker进程所拥有的backtype.storm.messaging.netty.Context实例
                   ( .term ^ IContext ( :mq-context worker))
                   ( log-message "Shutting down transfer thread")
                    ;; 关闭transfer-queue
                   ( disruptor/halt-with-interrupt! ( :transfer-queue worker))
                                        ;; 中断transfer-thread
                   ( .interrupt transfer-thread)
                    ;; 等待transfer-thread结束
                   ( .join transfer-thread)
                   ( log-message "Shut down transfer thread")
                    ;; 调用cancel-timer函数中断heartbeat-timer定时器线程
                   ( cancel-timer ( :heartbeat-timer worker))
                    ;; 调用cancel-timer函数中断refresh-connections-timer定时器线程
                   ( cancel-timer ( :refresh-connections-timer worker))
                    ;; 调用cancel-timer函数中断refresh-active-timer定时器线程
                   ( cancel-timer ( :refresh-active-timer worker))
                    ;; 调用cancel-timer函数中断executor-heartbeat-timer定时器线程
                   ( cancel-timer ( :executor-heartbeat-timer worker))
                    ;; 调用cancel-timer函数中断user-timer定时器线程
                   ( cancel-timer ( :user-timer worker))
                   
                    ;; 关闭该worker进程所拥有的线程池
                   ( close-resources worker)
                   
                    ;; TODO: here need to invoke the "shutdown" method of WorkerHook
                   
                    ;; 调用StormClusterState实例的remove-worker-heartbeat!函数从zookeeper上删除worker心跳信息
                   ( .remove-worker-heartbeat! ( :storm-cluster-state worker) storm-id assignment-id port)
                   ( log-message "Disconnecting from storm cluster state context")
                    ;; 关闭zookeeper链接
                   ( .disconnect ( :storm-cluster-state worker))
                   ( .close ( :cluster-state worker))
                   ( log-message "Shut down worker " storm-id " " assignment-id " " port))
        ;; ret实现了Shutdownable和DaemonCommon协议
        ret ( reify
            Shutdownable
            ( shutdown
              [ this ]
             ( shutdown*))
            DaemonCommon
            ( waiting? [ this ]
              ( and
                ( timer-waiting? ( :heartbeat-timer worker))
                ( timer-waiting? ( :refresh-connections-timer worker))
                ( timer-waiting? ( :refresh-active-timer worker))
                ( timer-waiting? ( :executor-heartbeat-timer worker))
                ( timer-waiting? ( :user-timer worker))
                ))
            )]
   
    ;; 将refresh-connections函数添加到定时器refresh-connections-timer中,每隔TASK-REFRESH-POLL-SECS执行一次。refresh-connections函数的无参版本提供一个默认回调函数调用其有参版原本更新所属           worker进程所拥有的collections,默认回调函数就是再次将refresh-connections函数无参版本添加到定时器refresh-connections-timer中
    ;; 这样只要zookeeper上分配信息发生变化,refresh-connections函数的有参版本就会执行,这里之因此周期执行refresh-connections函数是以防zookeeper的"watcher机制"失效
   ( schedule-recurring ( :refresh-connections-timer worker) 0 ( conf TASK-REFRESH-POLL-SECS) refresh-connections)
    ;; 将函数(partial refresh-storm-active worker)添加到定时器refresh-active-timer中,每隔TASK-REFRESH-POLL-SECS执行一次。refresh-storm-active函数的执行逻辑与refresh-connections函数彻底相      同
   ( schedule-recurring ( :refresh-active-timer worker) 0 ( conf TASK-REFRESH-POLL-SECS) ( partial refresh-storm-active worker))

   ( log-message "Worker has topology config " ( :storm-conf worker))
   ( log-message "Worker " worker-id " for storm " storm-id " on " assignment-id ":" port " has finished loading")
    ;; 返回实现了Shutdownable协议和DaemonCommon协议的实例ret,经过ret咱们能够关闭worker进程
    ret
   ))

worker-data函数:app

;; worker-data函数生成进程的"元数据"
( defn worker-data [ conf mq-context storm-id assignment-id port worker-id ]
  ;; 为该进程生成ClusterState实例
 ( let [ cluster-state ( cluster/mk-distributed-cluster-state conf)
        ;; 为该进程生成StormClusterState实例,这样进程就能够经过StormClusterState与zookeeper进行交互了
        storm-cluster-state ( cluster/mk-storm-cluster-state cluster-state)
        ;; 调用read-supervisor-storm-conf函数读取storm-id的配置信息,read-supervisor-storm-conf函数请参见其定义部分
        storm-conf ( read-supervisor-storm-conf conf storm-id)
        ;; executors绑定分配给该进程的executor的id集合,包含system executor的id
        executors ( set ( read-worker-executors storm-conf storm-cluster-state storm-id assignment-id port))
        ;; 进程内executor间通讯是经过disruptor实现的,因此这里为该worker建立了一个名为"worker-transfer-queue"的disruptor queue,关于disruptor的内容会在之后详细介绍
        ;; 注意transfer-queue是worker相关的,与executor无关
        transfer-queue ( disruptor/disruptor-queue "worker-transfer-queue" ( storm-conf TOPOLOGY-TRANSFER-BUFFER-SIZE)
                                                  :wait-strategy ( storm-conf TOPOLOGY-DISRUPTOR-WAIT-STRATEGY))
        ;; mk-receive-queue-map函数为每一个executor建立一个名为"receive-queue{executor-id}"的disruptor queue,executor-receive-queue-map绑定executor-id->"disruptor接收queue"的map  
        ;; 注意executor-receive-queue-map是executor相关,与worker无关                                    
        executor-receive-queue-map ( mk-receive-queue-map storm-conf executors)
        ;; executor可能有多个tasks,相同executor的tasks共用一个"disruptor接收queue",将executor-id->"disruptor接收queue"的map转化为task-id->"disruptor接收queue"的map,
        ;; 如executor-receive-queue-map={[1 2] receive-queue[1 2], [3 4] receive-queue[3 4]},那么receive-queue-map={1 receive-queue[1 2], 2 receive-queue[1 2], 3 receive-queue[3             4], 4 receive-queue[3 4]}
        receive-queue-map ( ->> executor-receive-queue-map
                              ( mapcat ( fn [[ e queue ]] ( for [ t ( executor-id->tasks e )] [ t queue ])))
                              ( into {}))
                ;; 调用read-supervisor-topology函数从supervisor本地路径"{storm.local.dir}/supervisor/stormdist/stormcode.ser"读取topology对象的序列化文件
        topology ( read-supervisor-topology conf storm-id )]
    ;; recursive-map宏会将下面value都执行一遍,用返回值和key生成新的map做为worker的"元数据",recursive-map宏见其定义部分
   ( recursive-map
      ;; 保存集群配置信息
      :conf conf
      ;; 保存一个传输层实例用于worker进程间消息传递,storm传输层被定义成了"可插拔式"插件,经过实现backtype.storm.messaging.IContext接口就能够定义本身的消息传输层。storm 0.8.x默认传输层实例是             backtype.storm.messaging.zmq,可是因为
      ;; 1.ZeroMQ是一个本地化的消息库,它过分依赖操做系统环境,并且ZeroMQ使用的是"堆外内存",没法使用jvm相关的内存监控工具进行监控管理,存在"堆外内存"泄漏风险
      ;; 2.安装起来比较麻烦
      ;; 3.ZeroMQ的稳定性在不一样版本之间差别巨大,而且目前只有2.1.7版本的ZeroMQ能与Storm协调的工做。
      ;; 因此storm 0.9以后默认传出层实例为backtype.storm.messaging.netty.Context,Netty有以下优势:
      ;; 1.平台隔离,Netty是一个纯Java实现的消息队列,能够帮助Storm实现更好的跨平台特性,同时基于JVM的实现可让咱们对消息有更好的控制,由于Netty使用jvm的堆内存,而不是堆外内存
      ;; 2.高性能,Netty的性能要比ZeroMQ快两倍左右
      ;; 3. 安全性认证,使得咱们未来要作的worker进程之间的认证受权机制成为可能。
      :mq-context ( if mq-context
                      mq-context
                     ( TransportFactory/makeContext storm-conf))
      ;; 记录所属storm-id
      :storm-id storm-id
      ;; 记录所属supervisor-id
      :assignment-id assignment-id
      ;; 记录端口
      :port port
      ;; 记录咱们分配给该进程的worker-id
      :worker-id worker-id
      ;; 记录ClusterState实例
      :cluster-state cluster-state
      ;; 记录StormClusterState实例,以便worker进程与zookeeper进行交互
      :storm-cluster-state storm-cluster-state
      ;; 记录topology的当前活跃状态为false
      :storm-active-atom ( atom false)
      ;; 记录分布在该worker进程上的executors的id
      :executors executors
      ;; 记录排序后的分布在该worker进程上的tasks的id
      :task-ids ( ->> receive-queue-map keys ( map int) sort)
      ;; 记录该topology的配置信息
      :storm-conf storm-conf
      ;; 记录topology实例
      :topology topology
      ;; 记录添加了acker,system bolt,metric bolt后的topology实例
      :system-topology ( system-topology! storm-conf topology)
      ;; 记录一个名为"heartbeat-timer"的定时器
      :heartbeat-timer ( mk-halting-timer "heartbeat-timer")
      ;; 记录一个名为"refresh-connections-timer"的定时器
      :refresh-connections-timer ( mk-halting-timer "refresh-connections-timer")
      ;; 记录一个名为"refresh-active-timer"的定时器
      :refresh-active-timer ( mk-halting-timer "refresh-active-timer")
      ;; 记录一个名为"executor-heartbeat-timer"的定时器
      :executor-heartbeat-timer ( mk-halting-timer "executor-heartbeat-timer")
      ;; 记录一个名为"user-timer"的定时器
      :user-timer ( mk-halting-timer "user-timer")
      ;; 记录任务id->组件名称键值对的map,形如:{1 "boltA", 2 "boltA", 3 "boltA", 4 "boltA", 5 "boltB", 6 "boltB"},storm-task-info函数请参见其定义部分
      :task->component ( HashMap. ( storm-task-info topology storm-conf)) ; for optimized access when used in tasks later on
      ;; 记录"组件名称"->"stream_id->输出域Fields对象的map"的map,component->stream->fields函数请参见其定义部分
      :component->stream->fields ( component->stream->fields ( :system-topology <>))
      ;; 记录"组件名称"->排序后task-id集合的map,形如:{"boltA" [1 2 3 4], "boltB" [5 6]}
      :component->sorted-tasks ( ->> ( :task->component <>) reverse-map ( map-val sort))
      ;; 记录一个ReentrantReadWriteLock对象
      :endpoint-socket-lock ( mk-rw-lock)
      ;; 记录一个node+port->socket的原子类型的map
      :cached-node+port->socket ( atom {})
      ;; 记录一个task->node+port的原子类型的map
      :cached-task->node+port ( atom {})
      ;; 记录该worker进程的传输队列transfer-queue
      :transfer-queue transfer-queue
      ;; 记录executor接收队列executor-receive-queue-map
      :executor-receive-queue-map executor-receive-queue-map
      ;; 记录executor中"开始任务id"->executor接收queue的map,如executor-receive-queue-map={[1 2] receive-queue[1 2], [3 4] receive-queue[3 4]},那么short-executor-receive-queue-map={1 receive-queue[1 2], 3 receive-queue[3 4]}
      :short-executor-receive-queue-map ( map-key first executor-receive-queue-map)
      ;; 记录task_id->executor中"开始任务id"的map,如executors=#{[1 2] [3 4] [5 6]},task->short-executor={1 1, 2 1, 3 3, 4 3, 5 5, 6 5}
      :task->short-executor ( ->> executors
                                ( mapcat ( fn [ e ] ( for [ t ( executor-id->tasks e )] [ t ( first e )])))
                                ( into {})
                                ( HashMap.))
      ;; 记录一个能够终止该worker进程的"自杀函数"
      :suicide-fn ( mk-suicide-fn conf)
      ;; 记录一个能够计算该worker进程启动了多长时间的函数
      :uptime ( uptime-computer)
      ;; 为该worker进程生成一个线程池
      :default-shared-resources ( mk-default-resources <>)
      ;; mk-user-resources函数目前版本为空实现
      :user-shared-resources ( mk-user-resources <>)
      ;; 记录一个函数,该函数的主要功能就是接收messages并将message发送到task对应的接收队列,mk-transfer-local-fn函数请参见其定义部分
      :transfer-local-fn ( mk-transfer-local-fn <>)
      ;; 记录每一个worker进程特有的接收线程的个数
      :receiver-thread-count ( get storm-conf WORKER-RECEIVER-THREAD-COUNT)
      ;; 将executor处理过的message放到worker进程发送队列transfer-queue中,mk-transfer-fn函数请参见其定义部分
      :transfer-fn ( <>)
     )))

read-worker-executors函数:jvm

;; read-worker-executors函数用于读取分布在该进程上的executor信息
( defn read-worker-executors [ storm-conf storm-cluster-state storm-id assignment-id port ]
  ;; assignment绑定executor->node+port的map,调用StormClusterState实例的assignment-info函数从zookeeper上读取storm-id的分配信息AssignmentInfo实例
  ;; AssignmentInfo定义以下:(defrecord Assignment [master-code-dir node->host executor->node+port executor->start-time-secs])
 ( let [ assignment ( :executor->node+port ( .assignment-info storm-cluster-state storm-id nil ))]
    ;; 返回分配给该进程的executor的id集合,包含system executor的id
   ( doall
    ;; 将system executor的id和topology executor的id合并
    ( concat
      ;; system executor的id,[-1 -1]    
      [ Constants/SYSTEM_EXECUTOR_ID ]
      ;; 从分配信息assignment中获取分配给该进程的executor
     ( mapcat ( fn [[ executor loc ]]
               ( if ( = loc [ assignment-id port ])
                  [ executor ]
                 ))
              assignment)))))

mk-receive-queue-map函数:

;; mk-receive-queue-map函数为每一个executor建立一个名为"receive-queue{executor-id}"的disruptor queue,如"receive-queue[1 3]",并返回executor-id->receive-queue的map
( defn- mk-receive-queue-map [ storm-conf executors ]
  ;; executors标识了executor-id集合
 ( ->> executors
      ;; TODO: this depends on the type of executor
      ;; 经过调用map函数为每一个executor-id建立一个"disruptor接收queue"
      ( map ( fn [ e ] [ e ( disruptor/disruptor-queue ( str "receive-queue" e)
                                                 ( storm-conf TOPOLOGY-EXECUTOR-RECEIVE-BUFFER-SIZE)
                                                  :wait-strategy ( storm-conf TOPOLOGY-DISRUPTOR-WAIT-STRATEGY ))]))
      ;; 返回executor-id->receive-queue的map                                          
      ( into {})
      ))

storm-task-info函数:

( defn storm-task-info
  "Returns map from task -> component id"
  [ ^ StormTopology user-topology storm-conf ]
 ( ->> ( system-topology! storm-conf user-topology)
      ;; 获取组件名称->组件对象键值对的map
      all-components
      ;; 返回组件名称->组件任务数键值对的map,如{"boltA" 4, "boltB" 2}
      ( map-val ( comp #( get % TOPOLOGY-TASKS) component-conf))
      ;; 按照组件名称对map进行排序返回结果序列,如(["boltA" 4] ["boltB" 2])
      ( sort-by first)
      ;; mapcat函数等价于对(map (fn...))的返回结果执行concat函数,返回("boltA" "boltA" "boltA" "boltA" "boltB" "boltB")
      ( mapcat ( fn [[ c num-tasks ]] ( repeat num-tasks c)))
      ;; {1 "boltA", 2 "boltA",3 "boltA", 4 "boltA", 5 "boltB", 6 "boltB"}
      ( map ( fn [ id comp ] [ id comp ]) ( iterate ( comp int inc) ( int 1)))
      ( into {})
      ))

component->stream->fields函数:

( defn component->stream->fields [ ^ StormTopology topology ]
  ;; 调用ThriftTopologyUtils/getComponentIds方法获取topology全部组件名称集合,如#{"boltA", "boltB", "boltC"}
 ( ->> ( ThriftTopologyUtils/getComponentIds topology)
          ;; 获取每一个组件的stream_id->StreamInfo对象的map,stream->fields函数请参见其定义部分
      ( map ( fn [ c ] [ c ( stream->fields topology c )]))
      ;; 生成"组件名称"->"stream_id->输出域Fields对象的map"的map
      ( into {})
      ;; 将其转化成Java的HashMap
      ( HashMap.)))

stream->fields函数:

( defn- stream->fields [ ^ StormTopology topology component ]
  ;; 获取指定组件名的ComponentCommon对象
 ( ->> ( ThriftTopologyUtils/getComponentCommon topology component)
        ;; 调用ComponentCommon对象的get_streams方法获取stream_id->StreamInfo对象的map,一个组件能够有多个输出流
      .get_streams
      ;; s绑定stream_id,info绑定StremInfo对象,调用StreamInfo对象的get_output_fields获取输出域List<String>对象,再用输出域List<String>对象生成Fields对象
      ( map ( fn [[s info ]] [s ( Fields. ( .get_output_fields info ))]))
      ;; 生成stream_id->Fields对象的map
      ( into {})
      ;; 将clojure结构的map转换成java中的HashMap
      ( HashMap.)))

mk-transfer-local-fn函数:

;; mk-transfer-local-fn函数返回一个匿名函数,该匿名函数的主要功能就是接收messages并将message发送到task对应的接收队列    
( defn mk-transfer-local-fn [ worker ]
  ;; short-executor-receive-queue-map绑定"开始任务id"->executor接收queue的map,如:{1 receive-queue[1 2], 3 receive-queue[3 4]}
 ( let [ short-executor-receive-queue-map ( :short-executor-receive-queue-map worker)
        ;; task->short-executor绑定task_id->executor中"开始任务id"的map,如:{1 1, 2 1, 3 3, 4 3}
        task->short-executor ( :task->short-executor worker)
        ;; task-getter绑定一个由comp生成的组合函数
        task-getter ( comp #( get task->short-executor %) fast-first )]
    ;; 返回一个匿名函数,tuple-batch是一个ArrayList对象,ArrayList的每一个元素都是一个长度为2的数组[task_id, message],task_id表示该消息由哪一个task处理,message表示消息
   ( fn [ tuple-batch ]
      ;; 调用fast-group-by函数获取"executor简写id"->须要该executor处理的消息List的map
     ( let [ grouped ( fast-group-by task-getter tuple-batch )]
        ;; fast-map-iters宏主要用于遍历map,short-executor标识"executor简写id",pairs标识消息[task_id, message]
       ( fast-map-iter [[ short-executor pairs ] grouped ]
          ;; 获取该executor的接收queue
         ( let [ q ( short-executor-receive-queue-map short-executor )]
            ;; 若是q不为空,则调用disruptor的publish方法将消息放入disruptor中
           ( if q
             ( disruptor/publish q pairs)
             ( log-warn "Received invalid messages for unknown tasks. Dropping... ")
             )))))))

fast-group-by函数:

;; fast-group-by函数的主要功能就是生成"executor简写id"->须要该executor处理的消息List的map            
( defn fast-group-by
  ;; afn绑定mk-transfer-local-fn函数中定义的task-getter函数,alist绑定一个ArrayList对象,ArrayList的每一个元素都是一个长度为2的数组[task_id, message],task_id表示该消息由哪一个task处理,message表示消息
  [ afn alist ]
  ;; 建立一个HashMap对象ret
 ( let [ ret ( HashMap. )]
    ;; fast-list-iter是一个宏,主要功能就是遍历list
   ( fast-list-iter
      ;; e绑定每一个[task_id, message]数组对象
      [ e alist ]
      ;; 调用afn绑定的task-getter函数获取该task_id所属的"executor的简写id",因此key绑定"executor简写id"
     ( let [ key ( afn e)
              ;; 从ret中获取key所对应的ArrayList对象,即须要该executor处理的消息列表
            ^ List curr ( get-with-default ret key ( ArrayList. ))]
        ;; [task_id, message]数组对象添加到list中
       ( .add curr e)))
    ;; 返回ret
    ret))

mk-transfer-fn函数:

;; mk-transfer-fn函数主要功能就是将executor处理过的message放到worker进程发送队列transfer-queue中
( defn mk-transfer-fn [ worker ]
  ;; local-tasks绑定分布在该worker进程上的task的id集合
 ( let [ local-tasks ( -> worker :task-ids set)
        ;; local-transfer标识mk-transfer-local-fn返回的匿名函数
        local-transfer ( :transfer-local-fn worker)
        ;; transfer-queue绑定该worker进程的传输队列transfer-queue
        ^ DisruptorQueue transfer-queue ( :transfer-queue worker)
        ;; task->node+port绑定task_id->node+port的map
        task->node+port ( :cached-task->node+port worker )]
    ;; 返回一个匿名函数,serializer标识一个Kryo序列化器,tuple-batch是一个ArrayList对象,ArrayList的每一个元素都是一个长度为2的数组[task_id, message],task_id表示该消息由哪一个task处理,即message的目标task,message表示消息
   ( fn [ ^ KryoTupleSerializer serializer tuple-batch ]
      ;; local为ArrayList
     ( let [ local ( ArrayList.)
            ;; remoteMap为HashMap
            remoteMap ( HashMap. )]
        ;; 遍历tuple-batch
       ( fast-list-iter [[ task tuple :as pair ] tuple-batch ]
          ;; 若是接收该消息的task为本地task,即该task也分布在该worker进程上,那么将该消息添加到local中
         ( if ( local-tasks task)
           ( .add local pair)
           
            ;;Using java objects directly to avoid performance issues in java code
            ;; 不然说明接收该消息的task不是本地task,即该task分布在其余worker进程上;node+port标识了运行该task的worker进程所在的节点和端口
           ( let [ node+port ( get @ task->node+port task )]
              ;; 若是remoteMap不包含node+port,则添加
             ( when ( not ( .get remoteMap node+port))
               ( .put remoteMap node+port ( ArrayList.)))
             ( let [ remote ( .get remoteMap node+port )]
                ;; 首先用task_id和序列化后的tuple生成TaskMessage对象,而后将TaskMessage对象添加到ArrayList中
               ( .add remote ( TaskMessage. task ( .serialize serializer tuple)))
                ))))
        ;; 调用local-transfer函数发送须要本地task处理的消息
       ( local-transfer local)
        ;; 调用disruptor的publish方法将remoteMap放入worker进程的传输队列transfer-queue中,remoteMap的key为node+port,value为ArrayList,ArrayList中每一个元素都是须要node+port所对应的worker进行处理
       ( disruptor/publish transfer-queue remoteMap)
         ))))

do-heartbeat函数:

( defn do-heartbeat [ worker ]
  ;; 获取集群配置信息
 ( let [ conf ( :conf worker)
        ;; 建立WorkerHeartbeat对象
        hb ( WorkerHeartbeat.
            ;; 本次心跳时间
            ( current-time-secs)
            ;; 该worker进程所属的topology-id
            ( :storm-id worker)
            ;; 分布在该worker进程上的executor-id集合
            ( :executors worker)
            ;; 该worker进程所占用的端口
            ( :port worker))
        ;; 建立一个基于目录"{storm.local.dir}/workers/{worker-id}/heartbeats"的LocalState对象,用于存放worker进程的"本地心跳信息",经过LocalState对象咱们能够访问一个序列化到磁盘的map对象
        state ( worker-state conf ( :worker-id worker ))]
   ( log-debug "Doing heartbeat " ( pr-str hb))
    ;; do the local-file-system heartbeat.
    ;; 将worker进程心跳信息经过LocalState对象存入磁盘,map对象的key为"worker-heartbeat"字符串,value为worker心跳信息
   ( .put state
        LS-WORKER-HEARTBEAT
        hb
        false
       )
    ;; 调用LocalState对象的clearup方法,只保留最近60次心跳信息
   ( .cleanup state 60) ; this is just in case supervisor is down so that disk doesn't fill up.
                        ; it shouldn't take supervisor 120 seconds between listing dir and reading it

   ))

do-executor-heartbeats函数:

;; do-executor-heartbeats函数主要功能就是经过worker-heartbeat!函数将worker进程心跳信息写入zookeeper的workerbeats节点中
( defnk do-executor-heartbeats [ worker :executors nil ]
  ;; stats is how we know what executors are assigned to this worker
  ;; stats绑定executor对象->executor统计信息的map。当第一次调用do-executor-heartbeats函数时,即第一次心跳时,executors为nil,map形如:{executor_1 nil, executor_2 nil, ... }
  ;; 当再次心跳时,将会调用executor对象的get-executor-id函数和render-stats函数,获取executor_id->executor统计信息的map,因此stats绑定的map在第一次心跳时和再次心跳时是不一样的,有关executor统计信  息的计算会在之后文章中具体分析。
 ( let [ stats ( if-not executors
                 ( into {} ( map ( fn [ e ] { e nil }) ( :executors worker)))
                 ( ->> executors
                   ( map ( fn [ e ] {( executor/get-executor-id e) ( executor/render-stats e )}))
                   ( apply merge)))
        ;; 构建worker进程的心跳信息
        zk-hb { :storm-id ( :storm-id worker)
              ;; 记录executor统计信息
              :executor-stats stats
              ;; 记录worker进程运行了屡次时间
              :uptime (( :uptime worker))
              ;; 记录worker进程心跳时间
              :time-secs ( current-time-secs)
              }]
    ;; do the zookeeper heartbeat
    ;; 调用StormClusterState对象的worker-heartbeat!函数将worker进程心跳信息zk-hb同步到zookeeper的"/workerbeats/{topology-id}/{supervisorId-port}/"节点中
   ( .worker-heartbeat! ( :storm-cluster-state worker) ( :storm-id worker) ( :assignment-id worker) ( :port worker) zk-hb)    
   ))

mk-refresh-connections函数:

;; mk-refresh-connections函数返回一个名为this的函数,在"storm启动supervisor源码分析-supervisor.clj"中,咱们在mk-synchronize-supervisor函数也见过这种定义函数的方式,是由于这个函数自己要在函数体内被使用。
;; 而且refresh-connections是须要反复被执行的,即当每次assignment-info发生变化的时候,就须要refresh一次,这里是经过zookeeper的"watcher机制"实现的
( defn mk-refresh-connections [ worker ]
  ;; outbound-tasks绑定用于接收该worker进程输出消息的全部任务,worker-outbound-tasks函数请参见其定义部分
 ( let [ outbound-tasks ( worker-outbound-tasks worker)
        ;; conf绑定worker配置信息
        conf ( :conf worker)
        ;; storm-cluster-state绑定StormClusterState实例
        storm-cluster-state ( :storm-cluster-state worker)
        ;; storm-id标识该worker进程所属的topology的id
        storm-id ( :storm-id worker )]
    ;; 返回名称为this的函数,每次assignment-info发生变化时,就执行一次来refresh该worker进程的connections
   ( fn this
      ;; 无参版本,提供一个"默认回调函数"调用有参版本,"默认回调函数"就是将this函数无参版本自己添加到worker进程的refresh-connections-timer定时器中,这样当assignment-info发生变化时,zookeeper的"watcher机制"
      ;; 就会执行回调函数,refresh-connections-timer定时器线程将会执行this函数。这样就能够保证,每次assignment发生变化,定时器都会在后台作refresh-connections的操做
      ([]
       ( this ( fn [ & ignored ] ( schedule ( :refresh-connections-timer worker) 0 this))))
      ;; 有参版本
      ([ callback ]
        ;; 调用StormClusterState实例的assignment-version函数获取storm-id的当前分配信息版本,并将callback函数注册到zookeeper
        ( let [ version ( .assignment-version storm-cluster-state storm-id callback)
              ;; 若是worker本地缓存的分配版本和zookeeper上获取的分配版本相等,那么说明storm-id的分配信息未发生变化,直接从worker本地获取分配信息
              assignment ( if ( = version ( :version ( get @( :assignment-versions worker) storm-id)))
                           ( :data ( get @( :assignment-versions worker) storm-id))
                            ;; 不然调用assignment-info-with-version函数从zookeeper的"/assignments/{storm-id}"节点从新获取带有版本号的分配信息,并注册回调函数,这样worker就能感知某个已存在的assignment是否被从新分配
                           ( let [ new-assignment ( .assignment-info-with-version storm-cluster-state storm-id callback )]
                              ;; 将最近分配信息保存到worker本地缓存
                             ( swap! ( :assignment-versions worker) assoc storm-id new-assignment)
                             ( :data new-assignment)))
              ;; my-assignment标识"接收该worker进程输出消息的任务"->[node port]的map
              my-assignment ( -> assignment
                                                  ;; 获取executor_id->[node port]的map,如:{[1 1] [node1 port1], [4 4] [node1 port1], [2 2] [node2 port1], [5 5] [node2 port1], [3 3] [node3 port1], [6 6] [node3 port1]}
                                :executor->node+port
                                ;; 获取task_id->[node port]的map,如:{[1 [node1 port1], 4 [node1 port1], 2 [node2 port1], 5 [node2 port1], 3 [node3 port1], 6 [node3 port1]}
                                to-task->node+port
                                ;; 选择"键"包含在outbound-tasks集合的键值对,假设outbound-tasks=#{4 5 6},过滤后为{4 [node1 port1], 5 [node2 port1], 6 [node3 port1]}
                               ( select-keys outbound-tasks)
                                ;; {4 "node1/port1", 5 "node2/port1", 6 "node3/port1"}
                               ( #( map-val endpoint->string %)))
              ;; we dont need a connection for the local tasks anymore
              ;; 过滤掉分布在该worker进程上的task,由于分布在通一个进程上不须要创建socket链接。假设该worker进程位于node1的port1上,则needed-assignment={5 "node2/port1", 6 "node3/port1"}
              needed-assignment ( ->> my-assignment
                                     ( filter-key ( complement ( -> worker :task-ids set))))
              ;; needed-connections绑定"须要的链接"的集合,needed-connections=#{"node2/port1", "node3/port1"}
              needed-connections ( -> needed-assignment vals set)
              ;; needed-tasks绑定须要创建链接的任务集合,needed-tasks=#{5, 6}
              needed-tasks ( -> needed-assignment keys)
             
              ;; current-connections绑定当前该worker进程"已创建的链接"的集合
              current-connections ( set ( keys @( :cached-node+port->socket worker)))
              ;; needed-connections和current-connections的差集表示须要"新建的链接"的集合,假设current-connections=#{},则new-connections=#{"node2/port1", "node3/port1"}
              new-connections ( set/difference needed-connections current-connections)
              ;; current-connections和needed-connections的差集表示须要"删除的链接"的集合
              remove-connections ( set/difference current-connections needed-connections )]
              ;; 将新建的链接合并到cached-node+port->socket中
             ( swap! ( :cached-node+port->socket worker)
                    #( HashMap. ( merge ( into {} %1) %2))
                    ;; 建立endpoint-str->connection对象的map,即创建新的链接。如:{"node2/port1" connect1, "node3/port1" connect2}
                    ( into {}
                      ( dofor [ endpoint-str new-connections
                              :let [[ node port ] ( string->endpoint endpoint-str )]]
                        [ endpoint-str
                         ( .connect
                          ^ IContext ( :mq-context worker)
                          storm-id
                          (( :node->host assignment) node)
                          port)
                          ]
                        )))
              ;; 将my-assignment保存到worker进程本地缓存cached-task->node+port中
             ( write-locked ( :endpoint-socket-lock worker)
               ( reset! ( :cached-task->node+port worker)
                       ( HashMap. my-assignment)))
              ;; close须要"删除的链接"
             ( doseq [ endpoint remove-connections ]
               ( .close ( get @( :cached-node+port->socket worker) endpoint)))
              ;; 将须要"删除的链接"从worker进程本地缓存cached-node+port->socket中删除,经过worker进程本地缓存cached-task->node+port和cached-node+port->socket,咱们就能够或得task和socket的对应关系
             ( apply swap!
                    ( :cached-node+port->socket worker)
                    #( HashMap. ( apply dissoc ( into {} %1) % &))
                    remove-connections)
              ;; 查找出未创建链接的task
             ( let [ missing-tasks ( ->> needed-tasks
                                      ( filter ( complement my-assignment )))]
                ;; 若是存在未创建链接的task,则记录日志文件
               ( when-not ( empty? missing-tasks)
                 ( log-warn "Missing assignment for following tasks: " ( pr-str missing-tasks))
                 )))))))

worker-outbound-tasks函数:

;; worker-outbound-tasks函数主要功能就是获取接收来自该worker消息的组件的task-id集合                
( defn worker-outbound-tasks
  "Returns seq of task-ids that receive messages from this worker"
  [ worker ]
  ;; context绑定backtype.storm.task.WorkerTopologyContext对象,worker-context函数请参见其定义部分
 ( let [ context ( worker-context worker)
        ;; 对分布在该worker进程上的每一个任务的task_id调用匿名函数(fn [task-id] ... ),并对返回结果进行concat操做,components绑定了接收组件id的集合
        components ( mapcat
                    ( fn [ task-id ]
                      ;; 调用context的getComponentId方法获取该task-id所属的组件(spout/bolt)的名称
                      ( ->> ( .getComponentId context ( int task-id))
                            ;; 调用context的getTargets方法,获取哪些组件接收了componentId输出的消息
                           ( .getTargets context)
                            vals
                            ;; 获取接收组件id的集合
                           ( map keys)
                           ( apply concat)))
                    ;; 获取分布在该worker进程上的task_id集合
                    ( :task-ids worker ))]
   ( -> worker
        ;; 获取任务id->组件名称键值对的map,形如:{1 "boltA", 2 "boltA", 3 "boltA", 4 "boltA", 5 "boltB", 6 "boltB"}
        :task->component
        ;; 结果形如:{"boltA" [1 2 3 4], "boltB" [5 6]}
        reverse-map
        ;; 过滤出"键"包含在components集合中的键值对
       ( select-keys components)
        vals
        flatten
        ;; 获取接收组件全部任务的id的集合
        set )))

worker-context函数:

( defn worker-context [ worker ]
  ;; 返回backtype.storm.task.WorkerTopologyContext对象
 ( WorkerTopologyContext. ( :system-topology worker)
                         ( :storm-conf worker)
                         ( :task->component worker)
                         ( :component->sorted-tasks worker)
                         ( :component->stream->fields worker)
                         ( :storm-id worker)
                         ( supervisor-storm-resources-path
                           ( supervisor-stormdist-root ( :conf worker) ( :storm-id worker)))
                         ( worker-pids-root ( :conf worker) ( :worker-id worker))
                         ( :port worker)
                         ( :task-ids worker)
                         ( :default-shared-resources worker)
                         ( :user-shared-resources worker)
                         ))

getTargets方法:

;; WorkerTopologyContext类继承GeneralTopologyContext类,getTargets方法是GeneralTopologyContext类实例方法,主要功能就是获取哪些组件接收了componentId输出的消息
;; 返回值为一个stream_id->{receive_component_id->Grouping}的map,receive_component_id就是接收组件的id              
public Map<String, Map<String, Grouping>> getTargets( String componentId) {
        ;; 建立返回结果map,ret
        Map<String, Map<String, Grouping>> ret = new HashMap<String, Map<String, Grouping>>();
        ;; 获取该topology的全部组件ids,并遍历
        for( String otherComponentId : getComponentIds()) {
            ;; 经过组件id获取组件的ComponentCommon对象,而后再获取其输入信息inputs
            Map<GlobalStreamId, Grouping> inputs = getComponentCommon( otherComponentId) .get_inputs();
            ;; 遍历输入信息,GlobalStreamId对象有两个成员属性,一个是流id,一个是发送该流的组件id
            for( GlobalStreamId id : inputs.keySet()) {
                ;; 若是输入流的组件id和componentId相等,那么说明该组件接收来自componentId的输出,则将其添加到ret中
                if( id.get_componentId() .equals( componentId)) {
                    Map<String, Grouping> curr = ret.get( id.get_streamId());
                    if( curr==null) curr = new HashMap<String, Grouping>();
                    curr.put( otherComponentId, inputs.get( id));
                    ret.put( id.get_streamId(), curr);
                }
            }
        }
        return ret;
    }

refresh-storm-active函数:

;; refresh-storm-active函数主要功能就是refresh指定worker进程缓存的所属topology的活跃状态                
( defn refresh-storm-active
  ;; "无回调函数"版本,使用默认回调函数调用"有回调函数"版本,默认回调函数将refresh-storm-active函数自己添加到refresh-active-timer定时器
  ([ worker ]
   ( refresh-storm-active worker ( fn [ & ignored ] ( schedule ( :refresh-active-timer worker) 0 ( partial refresh-storm-active worker)))))
  ;; "有回调函数"版本
  ([ worker callback ]
    ;; 调用StormClusterState实例的storm-base函数,从zookeeper的"/storms/{storm-id}"节点获取该topology的StormBase数据,并将回调函数callback注册到zookeeper的"/storms/{storm-id}"节点
    ;; 这样当该节点数据发生变化时,callback函数将被执行,即将refresh-storm-active函数添加到refresh-active-timer定时器,refresh-active-timer定时器线程将会执行refresh-storm-active函数
   ( let [ base ( .storm-base ( :storm-cluster-state worker) ( :storm-id worker) callback )]
    ;; 更新worker进程缓存的topology的活跃状态
    ( reset!
     ( :storm-active-atom worker)
     ( = :active ( -> base :status :type))
     ))
    ))

launch-receive-thread函数:

;; 为worker进程启动专有接收线程  
( defn launch-receive-thread [ worker ]
 ( log-message "Launching receive-thread for " ( :assignment-id worker) ":" ( :port worker))
  ;; launch-receive-thread!函数请参见其定义部分
 ( msg-loader/launch-receive-thread!
    ;; 链接实例,0.9版本开始默认使用netty,backtype.storm.messaging.netty.Context实例
   ( :mq-context worker)
   ( :storm-id worker)
    ;; 接收线程数
   ( :receiver-thread-count worker)
   ( :port worker)
    ;; 获取本地消息传输函数transfer-local-fn,transfer-local-fn函数将消息发送给分布在该worker进程上的task相应队列
   ( :transfer-local-fn worker)
    ;; 获取worker进程输入队列大小
   ( -> worker :storm-conf ( get TOPOLOGY-RECEIVER-BUFFER-SIZE))
    :kill-fn ( fn [ t ] ( exit-process! 11))))

launch-receive-thread!函数:

;; launch-receive-thread!函数定义在loader.clj文件中,用于启动指定worker进程的接收线程  
( defnk launch-receive-thread!
  [ context storm-id receiver-thread-count port transfer-local-fn max-buffer-size
  :daemon true
  :kill-fn ( fn [ t ] ( System/exit 1))
  :priority Thread/NORM_PRIORITY ]
  ;; max-buffer-size绑定worker进程最大输入队列大小
 ( let [ max-buffer-size ( int max-buffer-size)
      ;; 调用backtype.storm.messaging.netty.Context的bind方法创建一个服务器端的链接,socket绑定backtype.storm.messaging.netty.Server实例
        socket ( .bind ^ IContext context storm-id port)
        ;; thread-count绑定接收线程数,默认值为1
        thread-count ( if receiver-thread-count receiver-thread-count 1)
        ;; 调用mk-receive-threads函数建立接收线程,vthreads绑定接收线程所对应的SmartThread实例,经过该实例咱们能够start、join、interrupt接收线程,mk-receive-threads函数请参见其定义部分
        vthreads ( mk-receive-threads context storm-id port transfer-local-fn daemon kill-fn priority socket max-buffer-size thread-count )]
    ;; 返回一个匿名函数,该匿名函数的主要功能就是经过向task_id=-1的任务发送一个空消息来关闭接收线程
   ( fn []
      ;; 向本地端口port建立链接
     ( let [ kill-socket ( .connect ^ IContext context storm-id "localhost" port )]
       ( log-message "Shutting down receiving-thread: [" storm-id ", " port "]")
        ;; 向task_id=-1的任务发送一个空消息,接收线程在接收消息时,首先检查是不是发送给task_id=-1消息,若是是则关闭接收线程
       ( .send ^ IConnection kill-socket
                  -1 ( byte-array []))
        ;; 关闭链接
       ( .close ^ IConnection kill-socket)
       
       ( log-message "Waiting for receiving-thread:[" storm-id ", " port "] to die")
        ;; 等待全部接收线程结束
       ( for [ thread-id ( range thread-count )]
            ( .join ( vthreads thread-id)))
       
       ( log-message "Shutdown receiving-thread: [" storm-id ", " port "]")
       ))))

mk-receive-threads函数:

;; mk-receive-threads函数循环调用mk-receive-thread函数建立接收线程,mk-receive-thread请参见其定义部分
( defn- mk-receive-threads [ context storm-id port transfer-local-fn   daemon kill-fn priority socket max-buffer-size thread-count ]
 ( into [] ( for [ thread-id ( range thread-count )]
            ( mk-receive-thread context storm-id port transfer-local-fn   daemon kill-fn priority socket max-buffer-size thread-id))))

mk-receive-thread函数:

( defn- mk-receive-thread [ context storm-id port transfer-local-fn   daemon kill-fn priority socket max-buffer-size thread-id ]
    ;; async-loop函数接收一个"函数"或"函数工厂"做为参数生成一个java thread,这个java thread不断循环执行这个"函数"或"函数工厂"生产的函数。async-loop函数返回实现SmartThread协议的实例,经过该实例咱们能够start、join、interrupt接收线程
   ( async-loop
      ;; 这个参数就是一个"函数工厂","函数工厂"就是一个返回函数的函数
      ( fn []
        ( log-message "Starting receive-thread: [stormId: " storm-id ", port: " port ", thread-id: " thread-id   " ]")
        ;; 生成的java thread的run方法不断循环执行该函数
        ( fn []
          ;; batched是一个ArrayList对象
          ( let [ batched ( ArrayList.)
                ;; backtype.storm.messaging.netty.Server的recv方法返回ArrayList<TaskMessage>的Iterator<TaskMessage>。关于消息的处理流程会在之后文章中具体分析
                ^ Iterator iter ( .recv ^ IConnection socket 0 thread-id)
                closed ( atom false )]
            ;; 当iter不为nil,遍历iter
            ( when iter
              ( while ( and ( not @ closed) ( .hasNext iter))
                  ;; packet绑定一个TaskMessage对象,TaskMessage有两个成员属性task和message,task表示处理该消息的任务id,message表示消息的byte数组
                 ( let [ packet ( .next iter)
                      ;; task绑定接收该消息的任务id
                        task ( if packet ( .task ^ TaskMessage packet))
                        ;; message绑定消息的byte数组
                        message ( if packet ( .message ^ TaskMessage packet ))]
                      ;; 若是task=-1,则关闭接收线程
                     ( if ( = task -1)
                        ( do ( log-message "Receiving-thread:[" storm-id ", " port "] received shutdown notice")
                          ( .close socket)
                          ( reset! closed   true))
                        ;; 不然将数组[task message]添加到batched
                        ( when packet ( .add batched [ task message ]))))))
            ;; 若是接收线程关闭标识closed值为false,则调用transfer-local-fn函数将接收到的一批消息发送给task对应的接收队列
            ( when ( not @ closed)
              ( do
                ( if ( > ( .size batched) 0)
                  ( transfer-local-fn batched))
                ;; 0表示函数执行完一次不须要sleep,直接进行下一次执行
                0)))))
        ;; 表示参数是一个"函数工厂"
        :factory? true
        ;; daemon的值为true,因此接收线程是一个守护线程
        :daemon daemon
        ;; 指定kill函数
        :kill-fn kill-fn
        ;; 指定java thread的优先级
        :priority priority
        ;; 指定接收线程的名称为"worker-receiver-thread-"+thread-id
        :thread-name ( str "worker-receiver-thread-" thread-id)))

 

以上就是supervisor启动worker的源码分析,启动worker的过程当中涉及了executor的相关内容,这里没有详细分析,会在之后进行分析。同时也涉及了跟消息队列相关的内容也会在之后进行详细分析。

相关文章
相关标签/搜索