感知机(perceptron)原理总结

1. 感知机原理

感知机是二分类的线性分类模型,本质上想找到一条直线或者分离超平面对数据进行线性划分算法

  • 适用于线性可分的数据集,不然感知机不会收敛

假设有一个数据集\(D = {(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)}\),其中\(x_i \in R^n\),即\(x_i = (x_i^{(1)}, x_i^{(2)}, ...x_i^{(n)})\)网络

  • 模型的输入为实例的特征向量\(x_i\),输出为实例的类别,取值为+1(正例)或者-1(负例)
  • 咱们但愿找到一个分离超平面\(w^Tx + b = 0,其中w \in R^n\),使得有知足\(w^Tx + b > 0\)的实例所对应的类别为正例。而使得知足\(w^Tx + b < 0\)的实例所对应的类别为负例。

因而咱们能够构建出感知机模型为:\(f(x) = sign(w^Tx + b)\)机器学习

2. 损失函数

定义损失函数一个很天然的想法是创建在误分类点的个数上,可是使用误分类点的个数来构造损失函数并不容易优化函数

  • 所以使用误分类点到分离超平面的总距离来构造损失函数

记M为误分类点的集合,误分类点到分离超平面的总距离为:学习

\[L(w, b) = \sum_{x_i \in M}\frac{| w^Tx_i + b |}{\parallel w \parallel} \]

不考虑\(\frac{1}{\parallel w \parallel}\)(由于上式中,分子和分母有固定倍数的关系),而且去掉绝对值,就能够获得感知机的损失函数为:优化

\[L(w, b) = \sum_{x_i \in M} -y_i (w^Tx_i + b) \]

此时对于误分类点,\(-y_i (w^Tx_i + b) > 0\)成立spa

3. 优化方法

此时感知机算法就转变为,求解参数\(w, b\),使得损失函数极小化,即blog

\[\underset {w, b}{\arg \min L(w, b)} = \underset {w, b}{\arg \min} \sum_{x_i \in M} -y_i (w^Tx_i + b) \]

由于只有对误分类点才会对损失函数进行优化,所以感知机的优化采用随机梯度降低法(SGD),而非使用全部样本的批量随机梯度降低法(BGD)it

损失函数\(L(w, b)\)的梯度为:io

\[\frac{\partial L(w, b)}{\partial w} = -\sum_{x_i \in M} y_i x_i \]

\[\frac{\partial L(w, b)}{\partial b} = -\sum_{x_i \in M} y_i \]

对于SGD,选取一个误分类点进行更新,即有:

\[w_{t+1} = w_t + \alpha y_ix_i \]

\[b_{t+1} = b_t + \alpha y_i \]

4. 感知机的原始算法

训练集包括N个样例,样本中包含n个特征,标记为二分类取值为-1或者+1

  • 输入的样例:\({(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)}\),学习率:\(\alpha\)
  • 输出分离超平面的系数w, b

算法执行步骤以下:

  1. 初始化w, b以及学习率\(\alpha\)
  2. 在训练集选取数据\((x_i, y_i)\)
  3. 若是知足\(-y_i(sign(w^Tx_i + b)) > 0\),则

\[w_{t+1} = w_t + \alpha y_i x_i \]

\[b_{t+1} = b_t + \alpha y_i \]

  1. 转至2,直到训练集中没有误分类点

5. 感知机的对偶算法

对偶形式的基本想法是,将\(w\)\(b\)表示为实例\(x_i\)和标记\(y_i\)的线性组合的形式,经过求解它的系数来求解\(w\)\(b\)

假设初始值\(w_0\)\(b_0\)都为0,所以\(w\)\(b\)能够表示成\(x_iy_i\)\(y_i\)的增量形式,即原始形式能够化成:

\[w_{t+1} = \sum_{i=1}^{N}\beta_i y_i x_i \]

\[b_{t+1} = \sum_{i=1}^N \beta_i y_i \]

其中,\(\beta_i = n_i \alpha\)\(n_i\)表示第\(i\)个实例\(x_i\)更新的次数

此时,模型转变为

\[f(x) = sign(\sum_{j=1}^N \beta_j x_j y_j x + b) \]

训练集包括N个样例,样本中包含n个特征,标记为二分类取值为-1或者+1

  • 输入的样例:\({(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)}\),学习率:\(\alpha\)
  • 输出分离超平面的系数\(\beta\), b

算法执行步骤以下:

  1. 初始化\(\beta\), b以及学习率\(\alpha\)
  2. 在训练集选取数据\((x_i, y_i)\)
  3. 若是知足\(y_i(sign(\sum_{j=1}^N \beta_j y_j x_j x_i + b)) <= 0\),则

\[\beta_j(t+1) = \beta_j(t) + \alpha \]

\[b_{t+1} = b_t + \alpha y_i \]

  1. 转至2,直到训练集中没有误分类点

其中,训练实例能够经过计算Gram矩阵(即\(x_i\)\(x_j\)的内积组成的矩阵)的形式来存储

6. 从图形中理解感知机的原始算法

为了方便说明,记\(\hat w = (w, b)\)\(\hat x = (x, 1)\),则感知机模型能够变为:

\[f(x) = sign(\hat w^T \hat x) \]

以前咱们说明了,只有误分类点才会对\(\hat w\)进行更新。所以,考虑如下两种状况:

  1. 真实类别为y=+1, 可是模型的输出为-1

    • 考虑到\(\hat w^T \hat x = |\hat w||\hat x|cos\theta\)
    • 对于真实类别,咱们但愿说明\(\hat w^T \hat x > 0\),即\(\hat w\)\(\hat x\)的夹角越小越好,而模型的输出有\(\hat w^T \hat x < 0\),则说明\(\hat w\)\(\hat x\)的夹角过大
    • 所以,咱们能够经过减小\(\hat w\)\(\hat x\)的夹角来达到目的,即有\(\hat w(t+1) = \hat w(t) + \hat x(t)\)(对应着\(w_{t+1} = w_t + \alpha y_i x_i\),且\(\alpha = 1\)的状况)
    • \(y_i \hat w_{t+1}^T \hat x_i = y_i \hat w_t^T \hat x_i + y_i \parallel \hat x_i \parallel \geq y_i \hat w_t^T \hat x_i\)
      误分类状况1
  2. 真实类别为y=-1, 可是模型的输出为+1

    • 考虑到\(\hat w^T \hat x = |\hat w||\hat x|cos\theta\)
    • 对于真实类别,咱们但愿说明\(\hat w^T \hat x < 0\),即\(\hat w\)\(\hat x\)的夹角越大越好,而模型的输出有\(\hat w^T \hat x > 0\),则说明\(\hat w\)\(\hat x\)的夹角太小
    • 所以,咱们能够经过增大\(\hat w\)\(\hat x\)的夹角来达到目的,即有\(\hat w(t+1) = \hat w(t) - \hat x(t)\)(对应着\(w_{t+1} = w_t - \alpha y_i x_i\),且\(\alpha\) = 1的状况)
    • \(y_i \hat w_{t+1}^T \hat x_i = y_i \hat w_t^T \hat x_i - y_i \parallel \hat x_i \parallel = y_i \hat w_t^T \hat x_i + \parallel \hat x_i \parallel \geq y_i \hat w_t^T \hat x_i\)
      误分类状况2

其实,不管对于误分类的状况1仍是状况2,总有\(y_i \hat w_{t+1}^T \hat x_i = \geq y_i \hat w_t^T \hat x_i\),由于\(y_i \hat w_t^T \hat x_i\)的符号表明是否分类正确,大小表明分类超平面是否将其“分得很开”,上面的不等式说明了,对于某个误分类点来讲,更新后要比更新前要好,算法PLA对该误分类点“学习”了。

7. 感知机算法(PLA)的收敛性

对于线性可分的数据集,总能找到一个或者多个分类超平面能将该数据集划分,这代表了PLA的收敛性。

  • 这部分主要参考林轩田的《机器学习基石》,我的以为讲得要比李航的《统计学习方法》要清晰,虽然证实本质上是同样的

说明两个向量的类似性有不少方法,其中计算两个向量的内积是一种方法。当内积越大,代表两个向量越类似。固然,这须要考虑向量的长度,当模长越大时,向量的内积也会愈来愈大。

  • 符号说明:\(w_f\)表明真实的w,\(w_t\)表明咱们找到的w,这里为了符号简洁些,不记成\(\hat w\),可是含义同样,即\(w_f\)\(w_t\)里面包含\(b\),记学习率\(\alpha = 1\)
  1. 先讨论\(w_f\)\(w_t\)的内积,\(w_0\)为0向量
    \begin{equation}
    \begin{split}
    w_f^T w_t & = w_f^T(w_{t-1} + y_ix_i) \\
    & = w_f^T w_{t-1} + y_i w_f^T x_i \\
    & \geq w_f w_{t-1} + \underset {i} {min} (y_i w_f^T x_i) \\
    & \geq w_f w_0 + t \underset {i} {min} (y_i w_f^T x_i) \\
    & = t \underset {i} {min} (y_i w_f^T x_i)
    \end{split}
    \end{equation}

  2. 讨论\(w_f\)\(w_t\)的模长,因为只有误分类点才更新,因此有\(y_i w_{t}^T x_i \leq 0\)
    \begin{equation}
    \begin{split}
    \parallel w_t \parallel^2 & = \parallel w_{t-1} + y_ix_i \parallel^2 \\
    &= \parallel w_{t-1} \parallel^2 + 2y_i w_{t_1}^T x_i + \parallel y_ix_i \parallel^2 \\
    & \leq \parallel w_{t-1} \parallel^2 + \parallel x_i \parallel^2 \\
    & \leq \parallel w_{t-1} \parallel^2 + \underset {i} {max} \parallel x_i \parallel^2 \\
    & \leq \parallel w_{0} \parallel^2 + t \underset {i} {max} \parallel x_i \parallel^2 \\
    & = t \underset {i} {max} \parallel x_i \parallel^2
    \end{split}
    \end{equation}

  3. 讨论\(w_f\)\(w_t\)的角度
    \begin{equation}
    \begin{split}
    1 \geq cos \theta = \frac{w_f^T w_t}{\parallel w_f \parallel \parallel w_t \parallel} &
    \geq \frac{t \underset {i} {min} (y_i w_f^T x_i)}{\parallel w_f \parallel \sqrt{t \underset {i} {max} \parallel x_i \parallel^2}} \\
    & = \frac{\sqrt{t} \underset {i} {min} (y_i w_f^T x_i)}{\parallel w_f \parallel \sqrt{\underset {i} {max} \parallel x_i \parallel^2}}
    \end{split}
    \end{equation}

  4. 化解获得t的关系式

\[t \leq \frac{\parallel w_f \parallel^2 \underset {i} {max} \parallel x_i \parallel^2}{\underset {i} {min} (y_i w_f^T x_i)^2} = \frac{R^2}{\rho^2} \]

其中,$$R^2 = \underset {i} {max} \parallel x_i \parallel^2, \rho = \frac{\underset {i} {min} (y_i w_f^T x_i)}{\parallel w_f \parallel}$$

由上述不等式说明了,更新次数是有上限的,这也就证实了收敛性

8. 应用场景与缺陷

  • 感知机仅限于数据线性可分的状况,对于线性不可分的状况,该算法不收敛。
  • 感知机的收敛步数受两类别之间间隔的影响。间隔越小,收敛的步数越大。

9. 其余

从感知机的分类原理中,能够看出知足条件的超平面并不止一个,不一样的超平面依赖于参数的初始值。也就是说感知机模型能够有多个解。

  • 泛化能力最好的决策超平面
    • 可以将两个类型的样本分开
    • 可以最大化决策边界附近的两类型之间的距离

固然,感知机也是神经网络的重要基础,所以也能够从神经网络的角度来讲明

10. 参考资料

  • 李航《统计学习方法》
  • 林轩田《机器学习基石》
相关文章
相关标签/搜索