矩阵树Matrix-Tree定理与行列式

简单入门一下矩阵树Matrix-Tree定理。(本篇目不涉及矩阵树相关证实)html

一些定义与定理优化

  • 对于一个无向图 G ,它的生成树个数等于其基尔霍夫Kirchhoff矩阵任何一个N-1阶主子式行列式绝对值。
  • 所谓的N-1阶主子式就是对于一个任意的一个 r ,将矩阵的第 r 行和第 r 列同时删去获得的新矩阵。
  • 基尔霍夫Kirchhoff矩阵的一种求法:

    基尔霍夫Kirchhoff矩阵 K =度数矩阵 D - 邻接矩阵 Aspa

基尔霍夫Kirchhoff矩阵的具体构造htm

  • 度数矩阵D:是一个 ${N}\times{N}$ 的矩阵,其中

    $D[i][j]=0\;{(i}\neq{j)}$,$D[i][i]=i号点的度数$blog

  • 邻接矩阵A:是一个 ${N}\times{N}$ 的矩阵,其中

    ${A[i][i]=0}\;{,}\;{A[i][j]=A[j][i]=i,j之间的边数}$get

  • 而后基尔霍夫Kirchhoff矩阵K=D-A
  • 举个例子,对于以下的无向图,三个矩阵分别为

    image

行列式det(K)求法it

  • 已经得出了基尔霍夫Kirchhoff矩阵,那么随便去掉某一行一列并计算出新矩阵的行列式,其绝对值即为生成树个数。
  • ${det(K)=}\sum_{P}^{ }\;{(}{(-1)}^{\tau{(P)}}\times{K}_{1,p1}\times{K}_{2,p2}\times{K}_{3,p3}\times\cdots\times{K}_{N,pN}{)}$
  • 上面的式子中的 P 为 1~N 的任意一个排列。$\tau{(P)}$表示排列 P 的逆序对数。而那个求和式的每一项能够看作是在矩阵中选出N个数,使得他们的行列都不重合。
  • 求和式共有$N!$项,暴力求法的复杂度 ${O(N!)}\times{N}$
  • 这个复杂度太高了,看完了下面的行列式性质,而后引出优化求解方法。

行列式的性质入门

  • 性质.1  互换矩阵的两行(列),行列式变号。

    这个须要简单说明一下。方法

    考虑对于原矩阵 K,咱们能够获得其行列式的求和式:im

    ${det(K)=}\sum_{P}^{ }\;{(}{(-1)}^{\tau{(P)}}\times{K}_{1,p1}\times{K}_{2,p2}\times{K}_{3,p3}\times\cdots\times{K}_{N,pN}{)}$

    若交换某两行的位置后获得了 K' 矩阵,若写出其行列式的求和式,不难发现,若是不看符号位的变化,只看每个乘积项,那么这两个的矩阵的行列式的求和式是彻底相同的。咱们把相同的乘积项移到对应的位置,如图示:

    image

    可是很显然,两个矩阵的这一项对应的排列 P 和 P' 不一样:

    P :1 2 4 3

    P':3 2 4 1

    那这个符号位的变化是什么呢?

    从例子看得出来,τ(P) = 1 ,符号位为 –1;τ(P')=4,符号位为 1。

    那是否是都是这样的呢?

    即原来是 -1,如今就是 1;即原来是 1,如今就是 -1?逆序对变化量为奇数?

    答案是确定的,证实以下:

    image

    由此可知,逆序对数的变化量为奇数,即两个det()求和式的对应的每一项的符号位都相反,因此互换矩阵的两行(列),行列式变号

    (有了这个性质,下面的就比较简单了。)

  • 性质.2  若是矩阵有两行(列)彻底相同,则行列式为 0

    证实,由性质.1可知:由于交换这两行,获得的矩阵和原来相同,可是又要变号,则行列式的值只能为 0。

  • 性质.3  若是矩阵的某一行(列)中的全部元素都乘以同一个数k,新行列式的值等于原行列式的值乘上数k。

    这个的证实就是把那个求和式的每一项都提出一个公因子k就行了。

  • 推论  若是矩阵的某一行(列)中的全部元素都有一个公因子k,则能够把这个公因子k提到行列式求和式的外面。
  • 性质.3  若是矩阵有两行(列)成比例(比例系数k),则行列式的值为 0

    证实:也是把其中一行提出一个公因数k,那么剩下的det( )求和式所表明的矩阵中存在一行或一列彻底相同,则值为 0。

  • 性质.4  若是把矩阵的某一行(列)加上另外一行(列)的k倍,则行列式的值不变。

    证实:能够从求和式子的每一项的那一行的那个元素下手,

    把det( )求和式拆成两个 det( )求和式:

    det1( )与原矩阵的行列式求法相同

    det2( )所表明的矩阵中有两行成比例,比例系数为k,值为0 。

    因此相比原来的行列式,值不变。

优化行列式的求法

  • 首先对于这样一个矩阵:

    image

    注意到了么,是一个上三角矩阵(左下半部分的元素值为 0)。

    其行列式的值为对角线的乘积,(同理下三角矩阵)

    由于只有 P = 1 2 3 4 时,乘积项中才没有 0出现。

  • 同时注意到性质.4,因此采用高斯消元的方法,把矩阵消为一个上三角矩阵后,而后求出对角线的积,即是该矩阵的行列式的值。
  • 复杂度 O(N3),快了不少。

 

相关文章
相关标签/搜索