换个姿势看马氏距离和主成分分析

作者丨张贺  来源丨机器学习算法与Python实战(tjxj666) 马氏距离[1],全称马哈拉诺比斯距离,是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离。它是一种有效的计算两个未知样本集的相似度的方法。与欧氏距离不同的是它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者是有关联的),并且是尺度无关的,即独立于测量
相关文章
相关标签/搜索