最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。简单而言,假设咱们要统计全国人口的身高,首先假设这个身高服从服从正态分布,可是该分布的均值与方差未知。咱们没有人力与物力去统计全国每一个人的身高,可是能够经过采样,获取部分人的身高,而后经过最大似然估计来获取上述假设中的正态分布的均值与方差。函数
最大似然估计中采样需知足一个很重要的假设,就是全部的采样都是独立同分布的。下面咱们具体描述一下最大似然估计:post
首先,假设为独立同分布的采样,θ为模型参数,f为咱们所使用的模型,遵循咱们上述的独立同分布假设。参数为θ的模型f产生上述采样可表示为spa
回到上面的“模型已定,参数未知”的说法,此时,咱们已知的为,未知为θ,故似然定义为
blog
在实际应用中经常使用的是两边取对数,获得公式以下: 博客
其中称为对数似然,而
称为平均对数似然。而咱们平时所称的最大似然为最大的对数平均似然,即:
class
举个别人博客中的例子,假若有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。咱们想知道罐中白球和黑球的比例,但咱们不能把罐中的球所有拿出来数。如今咱们能够每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,而后把拿出来的球 再放回罐中。这个过程能够重复,咱们能够用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有多是多少?不少人立刻就有答案了:70%。而其后的理论支撑是什么呢?变量
咱们假设罐中白球的比例是p,那么黑球的比例就是1-p。由于每抽一个球出来,在记录颜色以后,咱们把抽出的球放回了罐中并摇匀,因此每次抽出来的球的颜色服从同一独立分布。这里咱们把一次抽出来球的颜色称为一次抽样。题目中在一百次抽样中,七十次是白球的几率是P(Data | M),这里Data是全部的数据,M是所给出的模型,表示每次抽出来的球是白色的几率为p。若是第一抽样的结果记为x1,第二抽样的结果记为x2... 那么Data = (x1,x2,…,x100)。这样,方法
P(Data | M)im
= P(x1,x2,…,x100|M)d3
= P(x1|M)P(x2|M)…P(x100|M)
= p^70(1-p)^30.
那么p在取什么值的时候,P(Data |M)的值最大呢?将p^70(1-p)^30对p求导,并其等于零。
70p^69(1-p)^30-p^70*30(1-p)^29=0。解方程能够获得p=0.7。
在边界点p=0,1,P(Data|M)=0。因此当p=0.7时,P(Data|M)的值最大。这和咱们常识中按抽样中的比例来计算的结果是同样的。
假如咱们有一组连续变量的采样值(x1,x2,…,xn),咱们知道这组数据服从正态分布,标准差已知。请问这个正态分布的指望值为多少时,产生这个已有数据的几率最大?
P(Data | M) = ?
根据公式
可得:
对μ求导可得 ,则最大似然估计的结果为μ=(x1+x2+…+xn)/n
由上可知最大似然估计的通常求解过程:
(1) 写出似然函数;
(2) 对似然函数取对数,并整理;
(3) 求导数 ;
(4) 解似然方程
注意:最大似然估计只考虑某个模型能产生某个给定观察序列的几率。而未考虑该模型自己的几率。这点与贝叶斯估计区别。