机器学习(六)——决策树和随机森林

参考网上 综合整理 决策树与随机森林 本篇博客将重新给出对决策树与随机森林的认识。主要分析决策树的学习算法:信息增益和ID3、C4.5、CART树,然后给出随机森林。 决策树中,最重要的问题有3个: 1. 特征选择。即选择哪个特征作为某个节点的分类特征; 2. 特征值的选择。即选择好特征后怎么划分子树; 3. 决策树出现过拟合怎么办? 下面分别就以上问题对决策树给出解释。决策树往往是递归的选择最优
相关文章
相关标签/搜索