OCR of Hand-written Data using SVM html
在kNN中,咱们直接使用像素强度做为特征向量。 此次咱们将使用方向梯度直方图(HOG)做为特征向量。在计算HOG以前,使用其二阶矩来校订图像:git
def deskew(img): m = cv2.moments(img) if abs(m['mu02']) < 1e-2: return img.copy() skew = m['mu11']/m['mu02'] M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]]) img = cv2.warpAffine(img,M,(SZ, SZ),flags=affine_flags) return img
接下来,咱们必须找到每一个单元格的HOG描述符,为此,咱们在X和Y方向上找到每一个单元的Sobel导数,而后在每一个像素处找到它们的大小和梯度方向,该梯度量化为16个整数值,将此图像分为四个子方块,对于每一个子平方,计算方向的直方图(16个区间),用它们的大小加权,所以每一个子方格都会为您提供一个包含16个值的向量,四个这样的矢量(四个子方块)一块儿给出了包含64个值的特征向量,这是咱们用来训练数据的特征向量。测试
def hog(img): gx = cv2.Sobel(img, cv2.CV_32F, 1, 0) gy = cv2.Sobel(img, cv2.CV_32F, 0, 1) mag, ang = cv2.cartToPolar(gx, gy) bins = np.int32(bin_n*ang/(2*np.pi)) # quantizing binvalues in (0...16) bin_cells = bins[:10,:10], bins[10:,:10], bins[:10,10:], bins[10:,10:] mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:] hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)] hist = np.hstack(hists) # hist is a 64 bit vector return hist
最后,与前一种状况同样,咱们首先将大数据集拆分为单个单元格,对于每一个数字,保留250个单元用于训练数据,剩余的250个数据保留用于测试。大数据
import numpy as np import cv2 import matplotlib.pyplot as plt SZ=20 bin_n = 16 # Number of bins affine_flags = cv2.WARP_INVERSE_MAP|cv2.INTER_LINEAR def deskew(img): m = cv2.moments(img) if abs(m['mu02']) < 1e-2: return img.copy() skew = m['mu11']/m['mu02'] M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]]) img = cv2.warpAffine(img,M,(SZ, SZ),flags=affine_flags) return img def hog(img): gx = cv2.Sobel(img, cv2.CV_32F, 1, 0) gy = cv2.Sobel(img, cv2.CV_32F, 0, 1) mag, ang = cv2.cartToPolar(gx, gy) bins = np.int32(bin_n*ang/(2*np.pi)) # quantizing binvalues in (0...16) bin_cells = bins[:10,:10], bins[10:,:10], bins[:10,10:], bins[10:,10:] mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:] hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)] hist = np.hstack(hists) # hist is a 64 bit vector return hist img = cv2.imread('digits.png',0) if img is None: raise Exception("we need the digits.png image from samples/data here !") cells = [np.hsplit(row,100) for row in np.vsplit(img,50)] # First half is trainData, remaining is testData train_cells = [ i[:50] for i in cells ] test_cells = [ i[50:] for i in cells] deskewed = [list(map(deskew,row)) for row in train_cells] hogdata = [list(map(hog,row)) for row in deskewed] trainData = np.float32(hogdata).reshape(-1,64) responses = np.repeat(np.arange(10),250)[:,np.newaxis] svm = cv2.ml.SVM_create() svm.setKernel(cv2.ml.SVM_LINEAR) svm.setType(cv2.ml.SVM_C_SVC) svm.setC(2.67) svm.setGamma(5.383) svm.train(trainData, cv2.ml.ROW_SAMPLE, responses) svm.save('svm_data.dat') deskewed = [list(map(deskew,row)) for row in test_cells] hogdata = [list(map(hog,row)) for row in deskewed] testData = np.float32(hogdata).reshape(-1,bin_n*4) result = svm.predict(testData)[1] mask = result==responses correct = np.count_nonzero(mask) print(correct*100.0/result.size)
输出:93.8code