Keras是基于Theano和Tensorflow的深度学习框架,参考文档。python
Keras不但提供了经常使用的Layers、Normalization、Regularation、Activation等算法,甚至还包括了几个经常使用的数据库例如cifar-10和mnist等等。算法
下面的代码算是Keras的Helloworld入门例程,利用MLP实现的MNIST手写数字识别:数据库
from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import SGD from keras.datasets import mnist import numpy model = Sequential() model.add(Dense(784, 500, init='glorot_uniform')) # 输入层,28*28=784 model.add(Activation('tanh')) # 激活函数是tanh model.add(Dropout(0.5)) # 采用50%的dropout model.add(Dense(500, 500, init='glorot_uniform')) # 隐层节点500个 model.add(Activation('tanh')) model.add(Dropout(0.5)) model.add(Dense(500, 10, init='glorot_uniform')) # 输出结果是10个类别,因此维度是10 model.add(Activation('softmax')) # 最后一层用softmax sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) # 设定学习率(lr)等参数 model.compile(loss='categorical_crossentropy', optimizer=sgd, class_mode='categorical') # 使用交叉熵做为loss函数 (X_train, y_train), (X_test, y_test) = mnist.load_data() # 使用Keras自带的mnist工具读取数据(第一次须要联网) X_train = X_train.reshape(X_train.shape[0], X_train.shape[1] * X_train.shape[2]) # 因为mist的输入数据维度是(num, 28, 28),这里须要把后面的维度直接拼起来变成784维 X_test = X_test.reshape(X_test.shape[0], X_test.shape[1] * X_test.shape[2]) Y_train = (numpy.arange(10) == y_train[:, None]).astype(int) # 参考上一篇文章,这里须要把index转换成一个one hot的矩阵 Y_test = (numpy.arange(10) == y_test[:, None]).astype(int) # 开始训练,这里参数比较多。batch_size就是batch_size,nb_epoch就是最多迭代的次数, shuffle就是是否把数据随机打乱以后再进行训练 # verbose是屏显模式,官方这么说的:verbose: 0 for no logging to stdout, 1 for progress bar logging, 2 for one log line per epoch. # 就是说0是不屏显,1是显示一个进度条,2是每一个epoch都显示一行数据 # show_accuracy就是显示每次迭代后的正确率 # validation_split就是拿出百分之多少用来作交叉验证 model.fit(X_train, Y_train, batch_size=200, nb_epoch=100, shuffle=True, verbose=1, show_accuracy=True, validation_split=0.3) print 'test set' model.evaluate(X_test, Y_test, batch_size=200, show_accuracy=True, verbose=1)
输出结果:框架
ssh://shibotian@***.***.***.***:22/usr/bin/python -u /usr/local/shared_dir/local/ipython_shibotian/shibotian/code/kreas_test1/run.py Using gpu device 0: Tesla K40m Train on 42000 samples, validate on 18000 samples Epoch 0 0/42000 [==============================] - 1s - loss: 0.9894 - acc.: 0.7386 - val. loss: 0.4795 - val. acc.: 0.8807 Epoch 1 0/42000 [==============================] - 1s - loss: 0.5635 - acc.: 0.8360 - val. loss: 0.4084 - val. acc.: 0.8889 省略。。。。。 Epoch 98 0/42000 [==============================] - 1s - loss: 0.2838 - acc.: 0.9116 - val. loss: 0.1872 - val. acc.: 0.9418 Epoch 99 0/42000 [==============================] - 1s - loss: 0.2740 - acc.: 0.9163 - val. loss: 0.1842 - val. acc.: 0.9434 test set 0/10000 [==============================] - 0s - loss: 0.1712 - acc.: 0.9480 Process finished with exit code 0