深刻浅出,Handler机制外科手术式的剖析(ThreadLocal,Looper,MessageQueen,Message)(上)数据结构
此文是Handler机制的第二篇,第一篇没有看的小伙伴,能够戳上边看一看哟。
上一篇咱们对ThreadLocal和Looper进行了剖析,接着上篇,讲讲MessageQueen和Handler类。
MessageQueen和Message
MessageQueen是存放Message的,翻译过来叫消息队列,可是它内部并非一个消息队列,而是一个单链表的数据结构,里边存放的数据就是Message。MessageQueen中的mMseeages字段存放的是头节点。既然是链表,就必定会涉及到插入和取出,咱们先看下它的插入方法:架构
boolean enqueueMessage(Message msg, long when) {
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}async
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}ide
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
这是主要的代码结构。enqueueMessage的第一个参数是Message,第二个是一个时间戳,他决定了这条Message插入在哪一个节点和何时执行回调。首先会判断是否正在退出,若是是就不插入消息,直接回收并返回失败。而后根据when来决定Message插入到哪一个节点,若是头结点为null,或者when==0,或者when小于头结点的when,那么就把这条数据插入头结点。else里边的逻辑也是相似的,根据两条数据的when来看看是否该插入这两条数据中间。最后执行完了返回true,插入成功。函数
取出数据的方法是next,咱们具体看一下:oop
Message next() {
final long ptr = mPtr;
if (ptr == 0) {
return null;
}post
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}ui
nativePollOnce(ptr, nextPollTimeoutMillis);this
synchronized (this) {
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
nextPollTimeoutMillis = -1;
}
if (mQuitting) {
dispose();
return null;
}spa
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
pendingIdleHandlerCount = 0;
nextPollTimeoutMillis = 0;
}
}
取出数据就伴随着删除,它里边也是一个无条件的for循环语句。首先从第一个节点去获取,若是若是没有数据,就阻塞在那里,等待native层返回数据,返回数据后就return给looper去处理,退出循环的方式就是根据mQuitting来判断的,这个字段也是quit方法里边改变的。next方法惟一被调用就是在Looper的loop()方法中,能够结合这刚才讲的loop方法看一下,一目了然。下边附上退出方法的代码,也就是Looper的quit和quitSafely具体执行的方法:
void quit(boolean safe) {
if (!mQuitAllowed) {
throw new IllegalStateException("Main thread not allowed to quit.");
}
synchronized (this) {
if (mQuitting) {
return;
}
mQuitting = true;
if (safe) {
removeAllFutureMessagesLocked();
} else {
removeAllMessagesLocked();
}
// We can assume mPtr != 0 because mQuitting was previously false.
nativeWake(mPtr);
}
}
MessageQueen小结:MessageQueen中有不少方法涉及到native层,我在这里没有剖析,这对于咱们理解MessageQueen的主要逻辑并不会形成影响,有兴趣的本身去看看。MessageQueen插入消息依赖的就是时间戳字段when,插入后他全部的消息都是有序的排在其中,取出消息遵循的是从第一个开始获取,这样每次都是取头结点,获取到以后把头结点mMessages指向下一个节点,下次再次获取头结点,直到所有取出。
Handler
讲完了这些以后,咱们来讲一下Handler类,这个是整个handler机制暴露给咱们的上层类,发送消息主要是各类send和post,咱们来具体看一下代码:
public final boolean post(Runnable r){
return sendMessageDelayed(getPostMessage(r), 0);
}
public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);
}
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public final boolean sendEmptyMessage(int what)
{
return sendEmptyMessageDelayed(what, 0);
}
public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
Message msg = Message.obtain();
msg.what = what;
return sendMessageDelayed(msg, delayMillis);
}
public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) {
Message msg = Message.obtain();
msg.what = what;
return sendMessageAtTime(msg, uptimeMillis);
}
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
从代码上能够看出来,全部的返送消息都指向了enqueueMessage(queue, msg, uptimeMillis);这个方法,而这个方法就是在向MessageQueen中插入了一条消息。MessageQueen插入消息以前,有这样一行代码:msg.target=this,把handler设置给msg,插入消息以后,MessageQueen的next方法就会返回给looper这条消息,looper收到以后交给Handler处理,主要代码你点进去能够看到就是经过msg.target.dispatchMessage(msg);咱们在讲looper的时候也说过,这个target就是handler。这里就再也不赘述,不清楚的哥们本身去看看源码吧,联系起来一目了然。
Handler的构造方法有好几个,意义也不同,咱们单独讲下,咱们最经常使用的是这种构造方法:
public interface Callback {
public boolean handleMessage(Message msg);
}
public Handler() {
this(null, false);
}
public Handler(Callback callback) {
this(callback, false);
}
public Handler(boolean async) {
this(null, async);
}
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
除了 new Handler(),咱们还能够传入一个callback来构造Handler,这个callback也有一个handleMessage(msg)方法,这样就能够在callback中回调全部的msg。在构造方法中,会去校验当前线程有没有looper,没有的话就会报异常,这也正好解决了咱们在开篇的时候提出的问题。
Handler还有几个构造方法,能够传进去一个Looper:
public Handler(Looper looper) {
this(looper, null, false);
}
public Handler(Looper looper, Callback callback) {
this(looper, callback, false);
}
public Handler(Looper looper, Callback callback, boolean async) {
mLooper = looper;
mQueue = looper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
经过传入Looper在构造Handler的时候,能够为Handler指定looper(这不是废话吗),有什么用呢?能够把Handler的回调切换到咱们建立looper的线程,好比说你在子线程建立的Handler,可是但愿灰调函数handleMessage方法执行在主线程,你能够这也构建:
private Handler mHandler = new Handler(Looper.getMainLooper()){
@Override
public void handleMessage(Message msg) {
// TODO: 9/7/17 do what you wanna
}
};
Handler的这些丰富的构造方法,可以很是便利的帮助咱们切换线程。Handler最后处理Message都是经过dispatchMessage来分发,具体代码以下所示:
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
private static void handleCallback(Message message) {
message.callback.run();
}
能够看出来,message进来以后,并非第一时间交给handleMessage()方法处理的。首先会去看看msg.callback是否为null,若是非空就执行run方法而后return(这个callback是个Runnable)。这样的Message须要这样构建:
Message msg = Message.obtain(mHandler, new Runnable() {
@Override
public void run() {
// TODO: 9/13/17 ....
}
});
而后去看看mCallback是否为null,mCallback就是咱们在Handler的构造方法时候传入的:
mHandler = new Handler(new Handler.Callback() {
@Override
public boolean handleMessage(Message msg) {
return false;
}
});
而后根据mCallback.handleMessage方法的返回值来决定是否执行Handler的handleMessage();
这就是dispatchMessage的逻辑,总结下来msg.callback优先级最高,其次Handler.mCallback,最后才是Handler.handleMessage。
结语:
Handler机制的全部过程到这里就讲完了,若是你跟着博客所有看了一遍,那你确定就理解了他的原理。Handler对于咱们来讲,用到的可能只有Handler这一个类,可是它内部的运行思想特别值得咱们借鉴,对于提升咱们的架构能力颇有帮助的。
若是有不许确的地方,欢迎指出。