时间序列ARIMA模型预测方法,及相关函数使用方法介绍

1、概述spa

首先引入Daniel检验的概念,即检测序列平稳性的一种方法,它是创建在Spearman相关系数(一种秩相关系数)的基础上的。3d

对于二维整体(X,Y)的样本观测数据,其中各份量..的秩统计量为R一、R2…Rn,y1,y2..yn的秩统计量为S一、S2…Sn。code

推广到时间序列预测样本,Spearman的相关系数为:blog

 

构造统计量:io

 

对于给定的alpha,经过t分布表能够查得的值,若是统计量大于查表的值,则接受检验假设H0: =0,即序列平稳,能够准确预测,不然拒绝H0,序列不平稳。ast

2、时间序列预测的优缺点分析class

(一)优势:基础

根据过去的事物发展规律预测未来,对于波动不大的事物变化,有较为精确的预测性。适合用于预测经济类等波动不明显的问题。变量

(二)缺点:方法

若是事物的发展规律波动较大,Spearman相关系数的假设检验不经过,T检验值大于,序列不平稳,预测值出现较大偏差。

 

3、ARIMA时间序列预测实例:

 

MATLAB代码:

 1 %% 时间序列预测法  2 clc,clear all;  3 a = [15.2 15.9 18.7 22.4 26.9 28.3 30.5 33.8 40.4 50.7 58  66.7 81.2 83.4];  4 Rt = tiedrank(a)    %求原始序列的秩统计量、(即将原始数据(因变量)从小到大排列)  5 n = length(a);  6 t = 1:n;  7 disp('Qs:')  8 Qs = 1-6/(n*(n^2-1))*sum((t-Rt).^2)     %di=Ri(自变量的秩统计量)-Si(因变量的秩统计量),即为di=t-Rt  9 T = Qs*sqrt(n-2)/sqrt(1-Qs.^2); 10 t_0 = tinv(0.975,n-2)   %计算alpha/2的值 11 b = diff(a)             %求原始序列的一阶差分 12 m = ar(b,2,'ls')        %估计标量时间序列的AR模型参数,option为最小二乘法 13 %仅用于标量时间序列。对于多变量数据,请使用arx。 14 disp('原始数据的预测值(第二个参数必须为列向量):') 15 bhat = predict(m,b')
16 disp('计算一个预测值(第二个参数必须为列向量):') 17 bhat(end+1) = forecast(m,b',1)
18 ahat = [a(1),a+bhat'] %原始数据预测值
19 delta = abs((ahat(1:end-1)-a)./a)   %相对偏差

 4、模型推广及复用

相关文章
相关标签/搜索