function J = computeCost(X, y, theta) %COMPUTECOST Compute cost for linear regression % J = COMPUTECOST(X, y, theta) computes the cost of using theta as the % parameter for linear regression to fit the data points in X and y % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly J = 0; % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost of a particular choice of theta % You should set J to the cost. predictions = X * theta; sqrErrors = (predictions-y) .^ 2; J = 1/(2*m) * sum(sqrErrors); % ========================================================================= end
转化成了向量(矩阵)形式,若是用其余的语言,用循环应该能够实现函数
predictions = X * theta; % 这里的大X是矩阵
sqrErrors = (predictions-y) .^ 2;
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters) %GRADIENTDESCENT Performs gradient descent to learn theta % theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by % taking num_iters gradient steps with learning rate alpha % Initialize some useful values m = length(y); % number of training examples J_history = zeros(num_iters, 1); for iter = 1:num_iters % ====================== YOUR CODE HERE ====================== % Instructions: Perform a single gradient step on the parameter vector % theta. % % Hint: While debugging, it can be useful to print out the values % of the cost function (computeCost) and gradient here. % theta_temp = theta; for j = 1:size(X, 2) theta_temp(j) = theta(j)-alpha*(1/m)*(X*theta - y)' * X(:, j); end theta = theta_temp; % ============================================================ % Save the cost J in every iteration J_history(iter) = computeCost(X, y, theta); end end
J_history = zeros(num_iters, 1);
theta_temp = theta;
把theta存起来。保证同时更新spa
for j = 1:size(X, 2) theta_temp(j) = theta(j)-alpha*(1/m)*(X*theta - y)' * X(:, j); end
更新theta debug
(X*theta - y)' 是转置
(X*theta - y)' * X(:, j);
这步是求和,至关于sum3d
J_history(iter) = computeCost(X, y, theta);code
记录代价函数orm
由于随着迭代次数的增长,代价函数收敛。theta也就肯定了。blog
代价函数的是下降,同时theta也在变化it
到后面代价函数的值已经不变化了。到收敛了io