sizeof()功能:计算数据空间的字节数
1.与strlen()比较
strlen()计算字符数组的字符数,以"\0"为结束判断,不计算为'\0'的数组元素。
而sizeof计算数据(包括数组、变量、类型、结构体等)所占内存空间,用字节数表示。
2.指针与静态数组的sizeof操做
指针都可看为变量类型的一种。全部指针变量的sizeof 操做结果均为4。
注意:int *p; sizeof(p)=4;
但sizeof(*p)至关于sizeof(int);
对于静态数组,sizeof可直接计算数组大小;
例:int a[10];char b[]="hello";
sizeof(a)等于4*10=40;
sizeof(b)等于6;
注意:数组作型参时,数组名称看成指针使用!!
void fun(char p[])
{sizeof(p)等于4}
经典问题:
double* (*a)[3][6];
cout<<sizeof(a)<<endl; // 4 a为指针
cout<<sizeof(*a)<<endl; // 72 *a为一个有3*6个指针元素的数组
cout<<sizeof(**a)<<endl; // 24 **a为数组一维的6个指针
cout<<sizeof(***a)<<endl; // 4 ***a为一维的第一个指针
cout<<sizeof(****a)<<endl; // 8 ****a为一个double变量
问题解析:a
是一个很奇怪的定义,他表示一个指向double*[3][6]类型数组的指针。既然是指针,因此sizeof(a)就是4。
既然a是执行double*[3][6]类型的指针,*a就表示一个double*[3][6]的多维数组类型,所以sizeof(*a)=3*6*sizeof(double*)=72。一样的,**a表示一个double*[6]类型的数组,因此sizeof(**a)=6*sizeof (double*)=24。***a就表示其中的一个元素,也就是double*了,因此sizeof(***a)=4。至于****a,就是一个double了,因此sizeof(****a)=sizeof(double)=8。
3.格式的写法
sizeof操做符,对变量或对象能够不加括号,但如果类型,须加括号。
4.使用sizeof时string的注意事项
string s="hello";
sizeof(s)等于string类的大小,sizeof(s.c_str())获得的是与字符串长度。
5.union 与struct的空间计算
整体上遵循两个原则:
(1)总体空间是 占用空间最大的成员(的类型)所占字节数的整倍数
(2)数据对齐原则----内存按结构成员的前后顺序排列,当排到该成员变量时,其前面已摆放的空间大小必须是该成员类型大小的整倍数,若是不够则补齐,以此向后类推。。。。。
注意:数组按照单个变量一个一个的摆放,而不是当作总体。若是成员中有自定义的类、结构体,也要注意数组问题。
例:[引用其余帖子的内容]
由于对齐问题使结构体的sizeof变得比较复杂,看下面的例子:(默认对齐方式下)
struct s1
{
char a;
double b;
int c;
char d;
};
struct s2
{
char a;
char b;
int c;
double d;
};
cout<<sizeof(s1)<<endl; // 24
cout<<sizeof(s2)<<endl; // 16
一样是两个char类型,一个int类型,一个double类型,可是由于对齐问题,致使他们的大小不一样。计算结构体大小能够采用元素摆放法,我举例子说明一下:首先,CPU判断结构体的对界,根据上一节的结论,s1和s2的对界都取最大的元素类型,也就是double类型的对界8。而后开始摆放每一个元素。
对于s1,首先把a放到8的对界,假定是0,此时下一个空闲的地址是1,可是下一个元素d是double类型,要放到8的对界上,离1最接近的地址是8了,因此d被放在了8,此时下一个空闲地址变成了16,下一个元素c的对界是4,16能够知足,因此c放在了16,此时下一个空闲地址变成了20,下一个元素d须要对界1,也正好落在对界上,因此d放在了20,结构体在地址21处结束。因为s1的大小须要是8的倍数,因此21-23的空间被保留,s1的大小变成了24。
对于s2,首先把a放到8的对界,假定是0,此时下一个空闲地址是1,下一个元素的对界也是1,因此b摆放在1,下一个空闲地址变成了2;下一个元素c的对界是4,因此取离2最近的地址4摆放c,下一个空闲地址变成了8,下一个元素d的对界是8,因此d摆放在8,全部元素摆放完毕,结构体在15处结束,占用总空间为16,正好是8的倍数。
这里有个陷阱,对于结构体中的结构体成员,不要认为它的对齐方式就是他的大小,看下面的例子:
struct s1
{
char a[8];
};
struct s2
{
double d;
};
struct s3
{
s1 s;
char a;
};
struct s4
{
s2 s;
char a;
};
cout<<sizeof(s1)<<endl; // 8
cout<<sizeof(s2)<<endl; // 8
cout<<sizeof(s3)<<endl; // 9
cout<<sizeof(s4)<<endl; // 16;
s1和s2大小虽然都是8,可是s1的对齐方式是1,s2是8(double),因此在s3和s4中才有这样的差别。
因此,在本身定义结构体的时候,若是空间紧张的话,最好考虑对齐因素来排列结构体里的元素。
补充:不要让double干扰你的位域
在结构体和类中,可使用位域来规定某个成员所能占用的空间,因此使用位域能在必定程度上节省结构体占用的空间。不过考虑下面的代码:
struct s1
{
int i: 8;
int j: 4;
double b;
int a:3;
};
struct s2
{
int i;
int j;
double b;
int a;
};
struct s3
{
int i;
int j;
int a;
double b;
};
struct s4
{
int i: 8;
int j: 4;
int a:3;
double b;
};
cout<<sizeof(s1)<<endl; // 24
cout<<sizeof(s2)<<endl; // 24
cout<<sizeof(s3)<<endl; // 24
cout<<sizeof(s4)<<endl; // 16
能够看到,有double存在会干涉到位域(sizeof的算法参考上一节),因此使用位域的的时候,最好把float类型和double类型放在程序的开始或者最后。
相关常数:
sizeof int:4 sizeof short:2 sizeof long:4 sizeof float:4 sizeof double:8 sizeof char:1 sizeof p:4 sizeof WORD:2 sizeof DWORD:4