机器学习 梯度下降法总结

梯度下降法 : 就是我们在对于一个代价函数求出适合的参数值的时候经常使用的方法,首先 J (thete1,…,theten) 我们要使得这个函数最小化,就需要不断去逼近这些 thete 值,我们需要深刻理解导数、偏导数这些东西才能知道其中的原理,比如说导数是一个函数沿着x轴正方向的变化率,在偏导数中 对于一个变量 xi 对它的偏导数就着这个方向增长的最大变化率,所以在使用梯度下降的时候需要向反方向
相关文章
相关标签/搜索