LightGBM算法解析

前言 在竞赛题中,我们知道XGBoost算法非常热门,它是一种优秀的拉动框架,但是在使用过程中,其训练耗时很长,内存占用比较大。在2017年年1月微软在GitHub的上开源了一个新的升压工具–LightGBM。在不降低准确率的前提下,速度提升了10倍左右,占用内存下降了3倍左右。因为他是基于决策树算法的,它采用最优的叶明智策略分裂叶子节点,然而其它的提升算法分裂树一般采用的是深度方向或者水平明智而
相关文章
相关标签/搜索