判断线段与直线是否相交html
对于线段相交的问题网上模板一大堆,但线段与直线相交的却不多,作几何计算的时候偶尔须要用到,若是没有相关的模板每每难如下手。这里就关于线段与直线相交的问题整理出一份模板,但愿有所帮助。如有不足之处,请路过的大牛门不惜赐教。c++
对于线段相交问题有两种版本:ide
① 包括端点相交和部分重合函数
② 不包括端点相交和部分重合spa
那么对于直线与线段问题一样能够分为两种版本:code
① 包括端点(线段端点)相交和重合htm
② 不包括端点和重合blog
原理:判断线段两个端点是否在直线异侧ip
预备函数:
it
struct point//定义点 { double x,y; point() {} point(double _x,double _y) { x=_x,y=_y; } point operator -(const point &b)const { return point(x-b.x,y-b.y); } double operator ^(const point &b)const { return x*b.y-y*b.x; } double operator *(const point &b)const { return x*b.x+y*b.y; } } ; struct line//线 { point a,b; }; int sgn(double x) { if(fabs(x)<eps) return 0; if(x<0) return -1; return 1; }
叉积
double mult(point p0,point p1,point p2)//叉积 { return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); }
版本一: 判断两点(p1,p2)是否在直线异侧,不包括端点和重合
bool opposite_side(point p1,point p2,point l1,point l2) { return mult(l1,p1,l2)*mult(l1,p2,l2)<-eps; }
bool seg_inter_line(line l1,line l2) { return sgn((l1.a-l2.b)^(l2.a-l2.b))*sgn((l1.b-l2.b)^(l2.a-l2.b))<=0; }
#include<bits/stdc++.h> using namespace std; const double eps=1e-8; struct point//定义点 { double x,y; point() {} point(double _x,double _y) { x=_x,y=_y; } point operator -(const point &b)const { return point(x-b.x,y-b.y); } double operator ^(const point &b)const { return x*b.y-y*b.x; } double operator *(const point &b)const { return x*b.x+y*b.y; } } ; struct line//线 { point a,b; }; int sgn(double x) { if(fabs(x)<eps) return 0; if(x<0) return -1; return 1; } double mult(point p0,point p1,point p2)//叉积 { return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); } bool opposite_side(point p1,point p2,point l1,point l2) { return mult(l1,p1,l2)*mult(l1,p2,l2)<-eps; } bool seg_inter_line(line l1,line l2) { return sgn((l1.a-l2.b)^(l2.a-l2.b))*sgn((l1.b-l2.b)^(l2.a-l2.b))<=0; } bool inter(point s1,point e1,point s2,point e2)//判断线段相交 { // return opposite_side(s1,e1,s2,e2) && opposite_side(s2,e2,s1,e1); return (max(s1.x,e1.x)>=min(s2.x,e2.x)) && (max(s2.x,e2.x)>=min(s1.x,e1.x)) && (max(s1.y,e1.y)>=min(s2.y,e2.y)) && (max(s2.y,e2.y)>=min(s1.y,e1.y)) && (mult(s1,s2,e1)*mult(s1,e1,e2)>0)&& (mult(s2,s1,e2)*mult(s2,e2,e1)>0); } int main() { line Seg,Line; Seg.a.x=0,Seg.a.y=0; Seg.b.x=1,Seg.b.y=1; Line.a.x=0,Line.a.y=2; Line.b.x=2,Line.b.y=0; printf("test1: "); if(opposite_side(Seg.a,Seg.b,Line.a,Line.b)) puts("opposite_side"); else puts("in_side!"); printf("test2: "); if(seg_inter_line(Seg,Line)) puts("opposite_side"); else puts("in_side!"); }