双边滤波是一种非线性滤波器,它能够达到保持边缘、降噪平滑的效果。和其余滤波原理同样,双边滤波也是采用加权平均的方法,用周边像素亮度值的加权平均表明某个像素的强度,所用的加权平均基于高斯分布[1]。最重要的是,双边滤波的权重不只考虑了像素的欧氏距离(如普通的高斯低通滤波,只考虑了位置对中心像素的影响),还考虑了像素范围域中的辐射差别(例如卷积核中像素与中心像素之间类似程度、颜色强度,深度距离等),在计算中心像素的时候同时考虑这两个权重。算法
双边滤波的核函数是空间域核与像素范围域核的综合结果:在图像的平坦区域,像素值变化很小,对应的像素范围域权重接近于1,此时空间域权重起主要做用,至关于进行高斯模糊;在图像的边缘区域,像素值变化很大,像素范围域权重变大,从而保持了边缘的信息。函数
void cv::bilateralFilter( InputArray _src, OutputArray _dst, int d, double sigmaColor, double sigmaSpace, int borderType ) { Mat src = _src.getMat(); _dst.create( src.size(), src.type() ); Mat dst = _dst.getMat(); if( src.depth() == CV_8U ) bilateralFilter_8u( src, dst, d, sigmaColor, sigmaSpace, borderType ); else if( src.depth() == CV_32F ) bilateralFilter_32f( src, dst, d, sigmaColor, sigmaSpace, borderType ); else CV_Error( CV_StsUnsupportedFormat, "Bilateral filtering is only implemented for 8u and 32f images" ); } static void bilateralFilter_8u( const Mat& src, Mat& dst, int d, double sigma_color, double sigma_space, int borderType ) { int cn = src.channels(); int i, j, k, maxk, radius; Size size = src.size(); CV_Assert( (src.type() == CV_8UC1 || src.type() == CV_8UC3) && src.type() == dst.type() && src.size() == dst.size() && src.data != dst.data ); if( sigma_color <= 0 ) sigma_color = 1; if( sigma_space <= 0 ) sigma_space = 1; // 计算颜色域和空间域的权重的高斯核系数, 均值 μ = 0; exp(-1/(2*sigma^2)) double gauss_color_coeff = -0.5/(sigma_color*sigma_color); double gauss_space_coeff = -0.5/(sigma_space*sigma_space); // radius 为空间域的大小: 其值是 windosw_size 的一半 if( d <= 0 ) radius = cvRound(sigma_space*1.5); else radius = d/2; radius = MAX(radius, 1); d = radius*2 + 1; Mat temp; copyMakeBorder( src, temp, radius, radius, radius, radius, borderType ); vector<float> _color_weight(cn*256); vector<float> _space_weight(d*d); vector<int> _space_ofs(d*d); float* color_weight = &_color_weight[0]; float* space_weight = &_space_weight[0]; int* space_ofs = &_space_ofs[0]; // 初始化颜色相关的滤波器系数: exp(-1*x^2/(2*sigma^2)) for( i = 0; i < 256*cn; i++ ) color_weight[i] = (float)std::exp(i*i*gauss_color_coeff); // 初始化空间相关的滤波器系数和 offset: for( i = -radius, maxk = 0; i <= radius; i++ ) { j = -radius; for( ;j <= radius; j++ ) { double r = std::sqrt((double)i*i + (double)j*j); if( r > radius ) continue; space_weight[maxk] = (float)std::exp(r*r*gauss_space_coeff); space_ofs[maxk++] = (int)(i*temp.step + j*cn); } } // 开始计算滤波后的像素值 for( i = 0; i < 0, size.height; i++ ) { const uchar* sptr = temp->ptr(i+radius) + radius*cn; // 目标像素点 uchar* dptr = dest->ptr(i); if( cn == 1 ) { // 按行开始遍历 for( j = 0; j < size.width; j++ ) { float sum = 0, wsum = 0; int val0 = sptr[j]; // 遍历当前中心点所在的空间邻域 for( k = 0; k < maxk; k++ ) { int val = sptr[j + space_ofs[k]]; float w = space_weight[k]*color_weight[std::abs(val - val0)]; sum += val*w; wsum += w; } // 这里不可能溢出, 所以没必要使用 CV_CAST_8U. dptr[j] = (uchar)cvRound(sum/wsum); } } else { assert( cn == 3 ); for( j = 0; j < size.width*3; j += 3 ) { float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0; int b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2]; k = 0; for( ; k < maxk; k++ ) { const uchar* sptr_k = sptr + j + space_ofs[k]; int b = sptr_k[0], g = sptr_k[1], r = sptr_k[2]; float w = space_weight[k]*color_weight[std::abs(b - b0) + std::abs(g - g0) + std::abs(r - r0)]; sum_b += b*w; sum_g += g*w; sum_r += r*w; wsum += w; } wsum = 1.f/wsum; b0 = cvRound(sum_b*wsum); g0 = cvRound(sum_g*wsum); r0 = cvRound(sum_r*wsum); dptr[j] = (uchar)b0; dptr[j+1] = (uchar)g0; dptr[j+2] = (uchar)r0; } } } }
[1]: Bilateral Filters(双边滤波算法)原理及实现
[2]: 双边滤波算法介绍与实现spa