下图就是我在Java画图板上画出的一个谢尔宾斯地毯java
制做谢尔宾斯地毯咱们须要用到——迭代算法
理解:dom
咱们能够看出2图是由若干个1图这样的基本图形组成的布局
一样无论迭代多少次都是由基本图形组成spa
因此咱们的任务就是画出1图这样的基本图形,剩下的就交给迭代去完成code
public void draw(Graphics g,int n,int x,int y,int width,int height) { /** *x:左上角x坐标,y:左上角y坐标 *width:宽,height:高 *n:迭代层次 */ g.fillRect(x+width/3,y+height/3,width/3,height/3); if(n==0)//递归结束条件 return; n--; //八个维度 draw(g,n,x, y, width/3, height/3); //1 draw(g,n,x+width/3, y, width/3, height/3);//2 draw(g,n,x+2*(width/3), y, width/3, height/3);//3 draw(g,n,x, y+height/3, width/3, height/3);//4 draw(g,n,x+2*(width/3), y+height/3, width/3, height/3);//5 draw(g,n,x, y+2*(height/3), width/3, height/3);//6 draw(g,n,x+width/3, y+2*(height/3), width/3, height/3);//7 draw(g,n,x+2*(width/3), y+2*(height/3), width/3, height/3);//8 }
理解:
原理和地毯同样,都要用到迭代orm
这是最基础的谢尔宾斯三角形对象
最外面的大三角形的三个坐标是咱们本身取的blog
咱们只要知道六个顶点,画出六条直线,剩下的就能够交给递归了递归
假设最外层三角形的坐标分别为(x1,y1)(x2,y2),(x3,y3)
那么三个中点的坐标就是
public void drawtri(Graphics g,int n,int x1,int y1,int x2,int y2,int x3,int y3 ){ g.drawLine(x1,y1,x2,y2); g.drawLine(x3,y3,x2,y2); g.drawLine(x1,y1,x3,y3); g.drawLine((x1+x2)/2,(y1+y2)/2,(x1+x3)/2,(y1+y3)/2); g.drawLine((x1+x2)/2,(y1+y2)/2,(x2+x3)/2,(y2+y3)/2); g.drawLine((x3+x2)/2,(y3+y2)/2,(x1+x3)/2,(y1+y3)/2); if(n==0) return; n--; drawtri(g,n,x1,y1,(x1+x2)/2,(y1+y2)/2,(x1+x3)/2,(y1+y3)/2); drawtri(g,n,(x1+x2)/2,(y1+y2)/2,x2,y2,(x3+x2)/2,(y3+y2)/2); drawtri(g,n,(x1+x3)/2,(y1+y3)/2,(x2+x3)/2,(y2+y3)/2,x3,y3); }
咱们在画图板上加上两个按钮,达到点击按钮
以鼠标点击与落下的线段做为地毯的对角线去绘制地毯
以咱们在画图板上点击的三个点去绘制三角形
画图板类:
import javax.swing.JFrame; //窗体 import javax.swing.JButton; //按钮 import java.awt.FlowLayout; //流式布局器 import java.awt.Graphics; //画笔 public class DrawPad { public static void main(String args[]){ DrawPad dp = new DrawPad();//建立画图板对象 dp.showUI(); } public void showUI(){ JFrame jf = new JFrame(); DrawPadListener dl = new DrawPadListener(); String[] brnstrs = {"地毯","三角形"}; for (int i = 0; i < brnstrs.length; i++) { JButton btn = new JButton(brnstrs[i]); btn.setName(brnstrs[i]); btn.addActionListener(dl);//按钮添加监听器 jf.add(btn);//将按钮添加到窗体上 } FlowLayout fl = new FlowLayout(); //流式布局器,使得添加到窗体上的组件从上到下,从左到右排列 //JFrame默认是 jf.setTitle("可视化"); //名称 jf.setSize(800,600); //尺寸 jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); //关闭进程 jf.setLayout(fl); //设置流式布局 jf.setResizable(false); //不能够改变窗体大小 jf.setLocationRelativeTo(null);//居中显示 jf.addMouseListener(dl); jf.setVisible(true); //设置窗体可视 Graphics g = jf.getGraphics(); //取画笔 dl.g = g; } }
监听器类:
package 分形; import java.awt.Color; //颜色 import java.awt.Graphics; //画笔 import java.awt.event.ActionEvent; import java.awt.event.ActionListener;//动做监听器 import java.awt.event.MouseEvent; import java.awt.event.MouseListener; //鼠标监听器 import java.util.Random; public class DrawPadListener implements MouseListener, ActionListener{ String btnstr; Graphics g; int x1,x2,y1,y2,x3,y3,x4,y4,x5,y5; int count = 0; int n = 1; Random r = new Random(); public void actionPerformed(ActionEvent e){ btnstr = e.getActionCommand(); System.out.println("actionPerformed方法被调用,btnstr为:"+btnstr); } public void mouseClicked(MouseEvent e){ System.out.println("点击"); } public void mousePressed(MouseEvent e){ System.out.println("按下"); x1=e.getX(); y1=e.getY(); double a,b,c,d; if(btnstr.equals("三角形")){ if(count == 0){ x3 = e.getX(); y3 = e.getY(); count++; }else if(count==1){ x4 = e.getX(); y4 = e.getY(); count++; }else if(count==2){ x5 = e.getX(); y5 = e.getY(); drawtri(g,n,x3,y3,x4,y4,x5,y5); count = 0; } } } public void mouseReleased(MouseEvent e){ System.out.println("释放"); x2=e.getX(); y2=e.getY();//释放点的坐标 if(btnstr.equals("地毯")) drawcpt(g,n,x1,y1,x2-x1,y2-y1); } public void mouseEntered(MouseEvent e){ System.out.println("进入"); } public void mouseExited(MouseEvent e){ System.out.println("退出"); } //谢尔宾斯地毯 public void drawcpt(Graphics g,int n,int x,int y,int width,int height) { g.fillRect(x+width/3,y+height/3,width/3,height/3); if(n==0)//递归结束条件 return; n--; drawcpt(g,n,x, y, width/3, height/3); drawcpt(g,n,x+width/3, y, width/3, height/3); drawcpt(g,n,x+2*(width/3), y, width/3, height/3); drawcpt(g,n,x, y+height/3, width/3, height/3); drawcpt(g,n,x+2*(width/3), y+height/3, width/3, height/3); drawcpt(g,n,x, y+2*(height/3), width/3, height/3); drawcpt(g,n,x+width/3, y+2*(height/3), width/3, height/3); drawcpt(g,n,x+2*(width/3), y+2*(height/3), width/3, height/3); } //谢尔宾斯三角形 public void drawtri(Graphics g,int n,int x1,int y1,int x2,int y2,int x3,int y3 ){ g.drawLine(x1,y1,x2,y2); g.drawLine(x3,y3,x2,y2); g.drawLine(x1,y1,x3,y3); g.drawLine((x1+x2)/2,(y1+y2)/2,(x1+x3)/2,(y1+y3)/2); g.drawLine((x1+x2)/2,(y1+y2)/2,(x2+x3)/2,(y2+y3)/2); g.drawLine((x3+x2)/2,(y3+y2)/2,(x1+x3)/2,(y1+y3)/2); if(n==0) return; n--; drawtri(g,n,x1,y1,(x1+x2)/2,(y1+y2)/2,(x1+x3)/2,(y1+y3)/2); drawtri(g,n,(x1+x2)/2,(y1+y2)/2,x2,y2,(x3+x2)/2,(y3+y2)/2); drawtri(g,n,(x1+x3)/2,(y1+y3)/2,(x2+x3)/2,(y2+y3)/2,x3,y3); } }