本篇主要介绍常见的6种搜索方式、聚合分析语法,基本是上机实战,能够和关系型数据库做对比,若是以前了解关系型数据库,那本篇只须要了解搜索和聚合的语法规则就能够了。java
以上篇创建的music索引为例,咱们先看看搜索结果的属性都有哪些mysql
{ "took": 1, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 1, "max_score": 1, "hits": [ { "_index": "music", "_type": "children", "_id": "1", "_score": 1, "_source": { "name": "gymbo", "content": "I hava a friend who loves smile, gymbo is his name", "length": "75" } } ] } }
主要的参数说明以下:sql
搜索全部数据数据库
GET /music/children/_search
json
带条件搜索api
GET /music/children/_search?q=name:gymbo&sort=length:asc
数组
此搜索语法的特色是全部的条件、排序所有用http请求的query string来附带的。这种语法通常是演示或curl命令行简单查询时使用,不适用构建复杂的查询条件,生产已经不多用了。网络
DSL:Domain Specified Language特定领域语言架构
http request body:请求体格式,body用json构建语法,能够构建各类复杂的语法。并发
查询全部数据
GET /music/children/_search { "query":{ "match_all": {} } }
带条件+排序:
GET /music/children/_search { "query":{ "match": { "name": "gymbo" } }, "sort":[{"length":"desc"}] }
分页查询,size从0开始,下面的命令取第10条到第19条数据
GET /music/children/_search { "query": { "match_all":{} }, "from": 10, "size": 10 }
指定要查询出来的属性
GET /music/children/_search { "query": { "match_all" : {} }, "_source": ["name","content"] }
带多个条件过滤:歌曲名称是gymbo,而且时长在65到80秒之间的
GET /music/children/_search { "query":{ "bool":{ "must": [ {"match": { "name": "gymbo" }} ], "filter": {"range": { "length": { "gte": 65, "lte": 80 } }} } } }
GET /music/children/_search { "query":{ "match": { "content":"friend smile" } } }
搜索的结果是按相关度分数来排序的,搜索条件中的content field,在新增document时已经创建倒排索引,而后按匹配度最高的来排序,全文索引的原理。
GET /music/children/_search { "query":{ "match_phrase": { "content":"friend smile" } } }
全文检索match会拆词,大小写不敏感,而后去倒排索引里去匹配,phrase search不分词,大小写敏感,要求搜索串彻底同样才匹配。
GET /music/children/_search { "query":{ "match_phrase":{ "content":"friend smile" } }, "highlight": { "fields": { "content":{} } } }
匹配的关键词会高亮显示,高亮的内容用标签达到标记效果。
聚合分析相似于关系型数据的分组统计,而且用的语法名称不少都与mysql相似,在这里,能看到不少熟悉的方法。
需求:统计每种语言下的歌曲数量。
size为0表示不显示符合条件的document记录,只显示统计信息,不写的话默认值是10
GET /music/children/_search { "size": 0, "aggs": { "group_by_lang": { "terms": { "field": "language" } } } }
响应结果:
{ "took": 3, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 1, "max_score": 0, "hits": [] }, "aggregations": { "group_by_lang": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "english", "doc_count": 1 } ] } } }
若是聚合查询时出现以下错误提示:
"root_cause": [ { "type": "illegal_argument_exception", "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [language] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead." } ]
须要将用于分组的字段的fielddata属性设置为true
PUT /music/_mapping/children { "properties": { "language": { "type": "text", "fielddata": true } } }
需求:对歌词中出现"friend"的歌曲,计算每一个语种下的歌曲数量
GET /music/children/_search { "size": 0, "query": { "match": { "content": "friend" } }, "aggs": { "all_languages": { "terms": { "field": "language" } } } }
需求:计算每一个语种下的歌曲,平均时长是多少
GET /music/children/_search { "size": 0, "aggs": { "group_by_languages": { "terms": { "field": "language" }, "aggs": { "avg_length": { "avg": { "field": "length" } } } } } }
需求:计算每一个语种下的歌曲,平均时长是多少,并按平均时长降序排序
GET /music/children/_search { "size": 0, "aggs": { "group_by_languages": { "terms": { "field": "language", "order": { "avg_length": "desc" } }, "aggs": { "avg_length": { "avg": { "field": "length" } } } } } }
需求:按照指定的时长范围区间进行分组,而后在每组内再按照语种进行分组,最后再计算时长的平均值
GET /music/children/_search { "size": 0, "aggs": { "group_by_price": { "range": { "field": "length", "ranges": [ { "from": 0, "to": 60 }, { "from": 60, "to": 120 }, { "from": 120, "to": 180 } ] }, "aggs": { "group_by_languages": { "terms": { "field": "language" }, "aggs": { "average_length": { "avg": { "field": "length" } } } } } } } }
上面的示例请求,都是单个单个发的,Elasticsearch还有一种语法,能够合并多个请求进行批量查询,这样能够减小每一个请求单独的网络开销,最基础的语法示例以下:
GET /_mget { "docs": [ { "_index" : "music", "_type" : "children", "_id" : 1 }, { "_index" : "music", "_type" : "children", "_id" : 2 } ] }
mget下面的docs参数是一个数组,数组里面每一个元素均可以定义一个文档的_index、_type和_id元数据,_index可相同也可不相同,也能够定义_source元数据指定想要的field。
响应的示例:
{ "docs": [ { "_index": "music", "_type": "children", "_id": "1", "_version": 4, "found": true, "_source": { "name": "gymbo", "content": "I hava a friend who loves smile, gymbo is his name", "language": "english", "length": "75", "likes": 0 } }, { "_index": "music", "_type": "children", "_id": "2", "_version": 13, "found": true, "_source": { "name": "wake me, shark me", "content": "don't let me sleep too late, gonna get up brightly early in the morning", "language": "english", "length": "55", "likes": 9 } } ] }
响应一样是一个docs数组,数组长度与请求时保持一致,若是有文档不存在、未搜索到或者别的缘由致使报错,不影响总体的结果,mget的http响应码仍然是200,每一个文档的搜索都是独立的。
若是批量查询的文档是在同一个index下面,能够将_index元数据(_type元数据我也顺便移走)移到请求行中:
GET /music/children/_mget { "docs": [ { "_id" : 1 }, { "_id" : 2 } ] }
或者是直接使用更简单的ids数组:
GET /music/children/_mget { "ids":[1,2] }
查询结果是同样的。
mget是很是重要的,在进行查询的时候,若是一次性要查询多条数据,那么必定要用batch批量操做的api,尽量减小网络开销次数,可能能够将性能提高数倍,甚至数十倍。
本篇介绍了最经常使用的搜索、批量查询和聚合场景的写法,包含分组统计,平均值,排序,区间分组。这是最基本的套路,基本包含了咱们常见的需求,熟悉mysql的话,掌握起来很是快,熟悉一下Restful的语法,基本就OK了。
专一Java高并发、分布式架构,更多技术干货分享与心得,请关注公众号:Java架构社区