机器学习之类别不平衡问题 —— ROC和PR曲线

写在前面:在CTR预估中,用户发生点击行为这类正样本显著少于负样本,那么用ROC来评价通常结果非常乐观,在网上调研了两天,对于不平衡问题,有多重评价方法, 尤其是PR曲线最常用,无论是竞赛还是实际场景中,这篇文章总结的非常全面,转载到这。 机器学习之类别不平衡问题 (1) —— 各种评估指标 机器学习之类别不平衡问题 (2) —— ROC和PR曲线 机器学习之类别不平衡问题 (3) —— 采样方法
相关文章
相关标签/搜索