生成模型与判别模型

从概率分布的角度考虑,对于一堆样本数据,每个均有特征Xi对应分类标记yi。 生成模型:学习得到联合概率分布P(x,y),即特征x和标记y共同出现的概率,然后求条件概率分布。能够学习到数据生成的机制。 判别模型:学习得到条件概率分布P(y|x),即在特征x出现的情况下标记y出现的概率。 数据要求:生成模型需要的数据量比较大,能够较好地估计概率密度;而判别模型对数据样本量的要求没有那么多。 两者的优缺
相关文章
相关标签/搜索