JavaShuo
栏目
标签
deepai新课代码The Hello World of Deep Learning with Neural Networks的tf1.0版本
时间 2020-12-30
标签
神经网络
tensorflow1.4.0
keras
繁體版
原文
原文链接
伴随着Tensorflow2.0的发布,前段时间吴恩达在Coursera上发布了配套新课《tensorflow:从入门到精通》,主要由Laurence Moroney讲授,共四周的内容,课程如图所示。 在第一课中,老师实现了一个简单的神经元,并在colab上可以在线运行。代码如下: import tensorflow as tf import numpy as np from tensorflow
>>阅读原文<<
相关文章
1.
Exploring the teaching of deep learning in neural networks
2.
Fundamentals of Deep Learning – Introduction to Recurrent Neural Networks
3.
Neural Networks and Deep Learning -- Class 4: Deep Neural Networks
4.
Neural Networks and Deep Learning
5.
Deep Learning 1: Foundations of Convolutional Neural Networks
6.
On the Number of Linear Regions of Deep Neural Networks
7.
【Deep Learning】笔记:Understanding the difficulty of training deep feedforward neural networks
8.
Few-Shot Learning with Graph Neural Networks
9.
neural networks and deep learning-chapter1-3
10.
Paper:Sequence to Sequence Learning with Neural Networks
更多相关文章...
•
Docker Hello World
-
Docker教程
•
MySQL的版本以及版本号
-
MySQL教程
•
IntelliJ IDEA代码格式化设置
•
IntelliJ IDEA 代码格式化配置和快捷键
相关标签/搜索
Deep Learning
Hello World!
networks
tf1.0
neural
hello--world团队
world
learning
deep
新版本
PHP 7 新特性
SQLite教程
MyBatis教程
代码格式化
乱码
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
吴恩达深度学习--神经网络的优化(1)
2.
FL Studio钢琴卷轴之工具菜单的Riff命令
3.
RON
4.
中小企业适合引入OA办公系统吗?
5.
我的开源的MVC 的Unity 架构
6.
Ubuntu18 安装 vscode
7.
MATLAB2018a安装教程
8.
Vue之v-model原理
9.
【深度学习】深度学习之道:如何选择深度学习算法架构
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Exploring the teaching of deep learning in neural networks
2.
Fundamentals of Deep Learning – Introduction to Recurrent Neural Networks
3.
Neural Networks and Deep Learning -- Class 4: Deep Neural Networks
4.
Neural Networks and Deep Learning
5.
Deep Learning 1: Foundations of Convolutional Neural Networks
6.
On the Number of Linear Regions of Deep Neural Networks
7.
【Deep Learning】笔记:Understanding the difficulty of training deep feedforward neural networks
8.
Few-Shot Learning with Graph Neural Networks
9.
neural networks and deep learning-chapter1-3
10.
Paper:Sequence to Sequence Learning with Neural Networks
>>更多相关文章<<