JavaShuo
栏目
标签
【Deep Learning】笔记:Understanding the difficulty of training deep feedforward neural networks
时间 2020-12-24
原文
原文链接
这几天读了这篇论文,在这里将大致内容写在这里。 Abstract 介绍这篇论文的主要内容就是尝试更好的理解为什么使用“标准随机初始化”来计算使用标准梯度下降的网络效果通常来讲都不是很好。 首先研究了不同的非线性激活函数的影响,发现 sigmoid 函数它的均值会导致在隐层中很容易到达函数的饱和区域,因此sigmoid 激活函数在随机初始化的深度网络中并不合适。但同时惊喜的发现,处于饱和的神经元能够
>>阅读原文<<
相关文章
1.
Xavier——Understanding the difficulty of training deep feedforward neural networks
2.
论文解析-《Understanding the difficulty of training deep feedforward neural networks》
3.
Paper之DL之BP:《Understanding the difficulty of training deep feedforward neural networks》
4.
[论文笔记] [2010] Understanding the Difficulty of Training Deep Feedforward Neural Networks
5.
神经网络不同激活函数比较--读《Understanding the difficulty of training deep feedforward neural networks》
6.
Exploring the teaching of deep learning in neural networks
7.
Neural Networks and Deep Learning 学习笔记(一)
8.
Neural Networks and Deep Learning
9.
On the difficulty of training Recurrent Neural Networks
10.
理解训练深层前馈神经网络的难度(Undetanding the difficulty of training deep feedforward neural networks )...
更多相关文章...
•
XSLT
元素
-
XSLT 教程
•
ASP.NET Razor - 标记
-
ASP.NET 教程
•
Tomcat学习笔记(史上最全tomcat学习笔记)
•
Java Agent入门实战(三)-JVM Attach原理与使用
相关标签/搜索
Deep Learning
deep
Deep Hash
wide&deep
deep sort
wide&&deep
networks
difficulty
feedforward
understanding
MyBatis教程
Spring教程
Redis教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
JDK JRE JVM,JDK卸载与安装
2.
Unity NavMeshComponents 学习小结
3.
Unity技术分享连载(64)|Shader Variant Collection|Material.SetPassFast
4.
为什么那么多人用“ji32k7au4a83”作密码?
5.
关于Vigenere爆0总结
6.
图论算法之最小生成树(Krim、Kruskal)
7.
最小生成树 简单入门
8.
POJ 3165 Traveling Trio 笔记
9.
你的快递最远去到哪里呢
10.
云徙探险中台赛道:借道云原生,寻找“最优路线”
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Xavier——Understanding the difficulty of training deep feedforward neural networks
2.
论文解析-《Understanding the difficulty of training deep feedforward neural networks》
3.
Paper之DL之BP:《Understanding the difficulty of training deep feedforward neural networks》
4.
[论文笔记] [2010] Understanding the Difficulty of Training Deep Feedforward Neural Networks
5.
神经网络不同激活函数比较--读《Understanding the difficulty of training deep feedforward neural networks》
6.
Exploring the teaching of deep learning in neural networks
7.
Neural Networks and Deep Learning 学习笔记(一)
8.
Neural Networks and Deep Learning
9.
On the difficulty of training Recurrent Neural Networks
10.
理解训练深层前馈神经网络的难度(Undetanding the difficulty of training deep feedforward neural networks )...
>>更多相关文章<<