独家 | 浅析机器学习中的自由度

作者:Jason Browniee 翻译:张若楠 校对:林鹤冲 本文长度为2800字,建议阅读8分钟 本文介绍了自由度的概念,以及如何判断统计学模型和机器学习模型中的自由度。 标签:数据处理 自由度是统计和工程学的重要概念,它通常用于总结在人们在计算样本统计或统计假设检验统计量时所使用的数据量。在机器学习中,自由度可以指模型中的参数数量,例如线性回归模型中的系数数量或深度学习神经网络中的权重数量。
相关文章
相关标签/搜索