最近在研究Cocos引擎的渲染流程,在这里将其整个渲染流程进行一下梳理:node
梳理以前咱们要知道一些东西,就是咱们的Cocos引擎是经过使用OpenGL的一些API来进行渲染绘制的,因此若是咱们要完全理解Cocos引擎的渲染流程并想修改引擎底层渲染的相关内容,熟悉OpenGL是颇有必要的。ide
这里先简单说一下大概流程,Cocos3.x版本的渲染是将全部须要渲染的node先经过各类RenderCommand封装起来,你先不用管RenderCommand是什么,只须要记住它把咱们要渲染的node封装起来了就行,而后引擎把这些RenderCommand添加到了一个队列中存了起来,这个队列叫CommandQueue,添加的时候顺便对这些RenderCommand设置了一些参数,最后在每一帧结束时调用进行渲染,渲染前会根据ID对RenderCommand进行排序,而后再进行渲染。函数
好了接下来咱们来开始梳理引擎整个的渲染流程了:oop
首先,整个工程的渲染流程的入口在哪里呢?优化
咱们打开工程文件目录,在 platform\win32文件目录下找到CCApplication-win3类文件,这里要注意不一样平台的不同,好比mac平台下是platform\mac目录下的CCApplication-mac文件,根据咱们发布的工程平台的不一样,这个CCApplication类文件也不一样。整个渲染流程就在这个CCApplication类文件run()方法中开始,代码以下:ui
[cpp] view plain copy print?this
int Application::run() spa
{ .net
...... 线程
director->mainLoop();//进入引擎的主循环
......
return 0;
}
int Application::run() { ...... director->mainLoop();//进入引擎的主循环 ...... return 0; }
这里咱们要了解一个概念,就是cocos2dx整个工程是运行在一个单线程里的,也就是咱们常常说的主线程,在主线程里完成渲染、相关的定时器等等处理。注意Application::run()中的这句:
[cpp] view plain copy print?
director->mainLoop();
director->mainLoop();
这句代码就是进入cocos2d-x的主循环了,这个主循环mainLoop()由导演负责维护,主线程mainloop()会不停地执行,理想状态下每秒会调用60次。
那咱们看看CCDirector类里的mainLoop()方法具体作了些什么:
[cpp] view plain copy print?
void DisplayLinkDirector::mainLoop()
{
if (_purgeDirectorInNextLoop)//进入下一个主循环,也就是结束此次的主循环,就净化,也就是一些后期处理
{
_purgeDirectorInNextLoop = false;
purgeDirector();
}
else if (_restartDirectorInNextLoop)
{
_restartDirectorInNextLoop = false;
restartDirector();
}
else if (! _invalid)
{
drawScene();//绘制屏幕
PoolManager::getInstance()->getCurrentPool()->clear();//释放一些没有用的对象,主要保件内存的合理管理
}
}
void DisplayLinkDirector::mainLoop() { if (_purgeDirectorInNextLoop)//进入下一个主循环,也就是结束此次的主循环,就净化,也就是一些后期处理 { _purgeDirectorInNextLoop = false; purgeDirector(); } else if (_restartDirectorInNextLoop) { _restartDirectorInNextLoop = false; restartDirector(); } else if (! _invalid) { drawScene();//绘制屏幕 PoolManager::getInstance()->getCurrentPool()->clear();//释放一些没有用的对象,主要保件内存的合理管理 } }
最开始我还疑惑为何mainLoop()方法的类是DisplayLinkDirector而不是CCDirector,可是在CCDirector.cpp中咱们会找到以下代码:
[cpp] view plain copy print?
static DisplayLinkDirector *s_SharedDirector = nullptr;
Director* Director::getInstance()
{
if (!s_SharedDirector)
{
s_SharedDirector = new (std::nothrow) DisplayLinkDirector();
CCASSERT(s_SharedDirector, "FATAL: Not enough memory");
s_SharedDirector->init();
}
return s_SharedDirector;
}
static DisplayLinkDirector *s_SharedDirector = nullptr; Director* Director::getInstance() { if (!s_SharedDirector) { s_SharedDirector = new (std::nothrow) DisplayLinkDirector(); CCASSERT(s_SharedDirector, "FATAL: Not enough memory"); s_SharedDirector->init(); } return s_SharedDirector; }
咱们能够看到Director类返回的单例对象是一个DisplayLinkDirector类型的,因此这个导演实例要执行mainLoop()方法,这个方法天然是DisplayLinkDirector类里的方法啦!
可是这是否是说明Director类就是DisplayLinkDirector类或继承自DisplayLinkDirector类呢?千万不要这样想!这两个类没有半毛钱关系,咱们在CCDirector.h中看到以下代码:
[cpp] view plain copy print?
class CC_DLL Director : public Ref
class CC_DLL Director : public Ref
能够看出Director类是继承自Ref类的,只是经过getInstance()方法返回的导演类的实例对象是DisplayLinkDirector类型的,CCDisplayLinkDirector类是CCDisplay的子类,从命名就应该能够很清晰的知道它的用处。这里虽然有点绕,但不要混淆哈!
好了,回过头来,在DisplayLinkDirector::mainLoop()方法中我能够看到这句代码:
[cpp] view plain copy print?
void DisplayLinkDirector::mainLoop()
{
......
drawScene();
......
}
void DisplayLinkDirector::mainLoop() { ...... drawScene(); ...... }
mainloop()若是执行会调用drawScene(),经过drawScene()代码就能够实现场景的绘制了。
那咱们继续看看drawScene()具体作了些什么:
[cpp] view plain copy print?
void Director::drawScene()
{
......
if (_notificationNode)
{
_notificationNode->visit(_renderer, Mat4::IDENTITY, 0);
}
......
_renderer->render();
}
void Director::drawScene() { ...... if (_notificationNode) { _notificationNode->visit(_renderer, Mat4::IDENTITY, 0); } ...... _renderer->render(); }
Director::drawScene()作了好多事情,其余的先不看,咱们主要关注这两句:
[cpp] view plain copy print?
1._notificationNode->visit(_renderer, Mat4::IDENTITY, 0);
1._notificationNode->visit(_renderer, Mat4::IDENTITY, 0);
[cpp] view plain copy print?
2._renderer->render();
2._renderer->render();
先看第一句,这句_notificationNode->visit(_renderer, Mat4::IDENTITY, 0) ,这句实际上是进入了一个循环调用,具体要看CCNode.cpp:
[cpp] view plain copy print?
void Node::visit(Renderer* renderer, const Mat4 &parentTransform, uint32_t parentFlags)
{
......
for( ; i < _children.size(); i++ )
{
auto node = _children.at(i);
if (node && node->_localZOrder < 0)
node->visit(renderer, _modelViewTransform, flags);
else
break;
}
......
this->draw(renderer, _modelViewTransform, flags);
......
}
void Node::visit(Renderer* renderer, const Mat4 &parentTransform, uint32_t parentFlags) { ...... for( ; i < _children.size(); i++ ) { auto node = _children.at(i); if (node && node->_localZOrder < 0) node->visit(renderer, _modelViewTransform, flags); else break; } ...... this->draw(renderer, _modelViewTransform, flags); ...... }
这个函数有一个循环调用,咱们能够看到auto node = _children.at(i);和node->visit(renderer, _modelViewTransform, flags);,这段代码的意思是先获取子节点,而后递归调用节点的visit()函数,到了没有子节点的节点,执行了这句this->draw(renderer, _modelViewTransform, flags),开始调用draw()函数,那么咱们接着看draw()函数代码:
[cpp] view plain copy print?
void Node::draw(Renderer* renderer, const Mat4 &transform, uint32_t flags)
{
}
void Node::draw(Renderer* renderer, const Mat4 &transform, uint32_t flags) { }
里面什么都没有啊,这是怎么回事?其实这个draw()函数是个虚函数,因此它执行时执行的是该子节点类的draw()函数。那么咱们分别看DrawNode::draw()、Sprite::draw():
[cpp] view plain copy print?
void DrawNode::draw(Renderer *renderer, const Mat4 &transform, uint32_t flags)
{
if(_bufferCount)
{
......
renderer->addCommand(&_customCommand);
}
if(_bufferCountGLPoint)
{
......
renderer->addCommand(&_customCommandGLPoint);
}
if(_bufferCountGLLine)
{
......
renderer->addCommand(&_customCommandGLLine);
}
}
void DrawNode::draw(Renderer *renderer, const Mat4 &transform, uint32_t flags) { if(_bufferCount) { ...... renderer->addCommand(&_customCommand); } if(_bufferCountGLPoint) { ...... renderer->addCommand(&_customCommandGLPoint); } if(_bufferCountGLLine) { ...... renderer->addCommand(&_customCommandGLLine); } }
[cpp] view plain copy print?
void Sprite::draw(Renderer *renderer, const Mat4 &transform, uint32_t flags)
{
......
if(_insideBounds)
{
......
renderer->addCommand(&_trianglesCommand);
}
}
void Sprite::draw(Renderer *renderer, const Mat4 &transform, uint32_t flags) { ...... if(_insideBounds) { ...... renderer->addCommand(&_trianglesCommand); } }
咱们能够看到在在这些子类的draw()函数都执行了renderer->addCommand()代码,这是向RenderQueue中添加RenderCommand,在添加时顺便对RenderCommand进行了一些参数设置,固然有的类的draw()不是向RenderQueue中添加RenderCommand,而是直接使用OpenGL的API直接进行渲染,或者作一些其余的事情。
当Director::drawScene()循环调用完全部子节点的visit()方法而且执行完draw()方法,即向RenderQueue中添加完RenderCommand后,咱们就看看接下来进行渲染的Renderer::render() 函数都作了些什么:
[cpp] view plain copy print?
void Renderer::render()
{
_isRendering = true;
if (_glViewAssigned)
{
for (auto &renderqueue : _renderGroups)
{
renderqueue.sort();
}
visitRenderQueue(_renderGroups[0]);
}
clean();
_isRendering = false;
}
void Renderer::render() { _isRendering = true; if (_glViewAssigned) { for (auto &renderqueue : _renderGroups) { renderqueue.sort(); } visitRenderQueue(_renderGroups[0]); } clean(); _isRendering = false; }
看到“renderqueue.sort()",这是根据ID先对全部RenderCommand进行排序,而后才进行渲染,“visitRenderQueue( _renderGroups[0])”就是来进行渲染的。
那么咱们接着看看void Renderer::visitRenderQueue(const RenderQueue& queue)的代码:
[cpp] view plain copy print?
void Renderer::visitRenderQueue(RenderQueue& queue)
{
queue.saveRenderState();
const auto& zNegQueue = queue.getSubQueue(RenderQueue::QUEUE_GROUP::GLOBALZ_NEG);
if (zNegQueue.size() > 0)
{
if(_isDepthTestFor2D)
{
glEnable(GL_DEPTH_TEST);
glDepthMask(true);
glEnable(GL_BLEND);
RenderState::StateBlock::_defaultState->setDepthTest(true);
RenderState::StateBlock::_defaultState->setDepthWrite(true);
RenderState::StateBlock::_defaultState->setBlend(true);
}
else
{
glDisable(GL_DEPTH_TEST);
glDepthMask(false);
glEnable(GL_BLEND);
RenderState::StateBlock::_defaultState->setDepthTest(false);
RenderState::StateBlock::_defaultState->setDepthWrite(false);
RenderState::StateBlock::_defaultState->setBlend(true);
}
for (auto it = zNegQueue.cbegin(); it != zNegQueue.cend(); ++it)
{
proce***enderCommand(*it);
}
flush();
}
void Renderer::visitRenderQueue(RenderQueue& queue) { queue.saveRenderState(); const auto& zNegQueue = queue.getSubQueue(RenderQueue::QUEUE_GROUP::GLOBALZ_NEG); if (zNegQueue.size() > 0) { if(_isDepthTestFor2D) { glEnable(GL_DEPTH_TEST); glDepthMask(true); glEnable(GL_BLEND); RenderState::StateBlock::_defaultState->setDepthTest(true); RenderState::StateBlock::_defaultState->setDepthWrite(true); RenderState::StateBlock::_defaultState->setBlend(true); } else { glDisable(GL_DEPTH_TEST); glDepthMask(false); glEnable(GL_BLEND); RenderState::StateBlock::_defaultState->setDepthTest(false); RenderState::StateBlock::_defaultState->setDepthWrite(false); RenderState::StateBlock::_defaultState->setBlend(true); } for (auto it = zNegQueue.cbegin(); it != zNegQueue.cend(); ++it) { proce***enderCommand(*it); } flush(); }
在visitRenderQueue()方法中我咱们看到这一行代码:
[cpp] view plain copy print?
proce***enderCommand(*it);
proce***enderCommand(*it);
这是干什么的呢?这句代码就是进一步进入渲染流程的,咱们看一下proce***enderCommand()它作了什么:
[cpp] view plain copy print?
void Renderer::proce***enderCommand(RenderCommand* command)
{
auto commandType = command->getType();
if( RenderCommand::Type::TRIANGLES_COMMAND == commandType)
{
......
drawBatchedTriangles();
......
}
else if ( RenderCommand::Type::QUAD_COMMAND == commandType )
{
......
drawBatchedQuads();
......
}
else if (RenderCommand::Type::MESH_COMMAND == commandType)
{
......
auto cmd = static_cast<MeshCommand*>(command);
......
cmd->execute();
......
}
......
}
void Renderer::proce***enderCommand(RenderCommand* command) { auto commandType = command->getType(); if( RenderCommand::Type::TRIANGLES_COMMAND == commandType) { ...... drawBatchedTriangles(); ...... } else if ( RenderCommand::Type::QUAD_COMMAND == commandType ) { ...... drawBatchedQuads(); ...... } else if (RenderCommand::Type::MESH_COMMAND == commandType) { ...... auto cmd = static_cast<MeshCommand*>(command); ...... cmd->execute(); ...... } ...... }
咱们能够看到,在这里,根据渲染类型的不一样,会调用不一样的函数,这些函数里有OpenGL的API,没错,这些函数来进行渲染的。好比TRIANGLES_COMMAND类型中调用了drawBatchedTriangles(),QUAD_COMMAND类型中调用了drawBatchedQuads(),MESH_COMMAND类型中调用了MeshCommand::execute(),等等。
举个例子,咱们来看下drawBatchedTriangles()方法:
[cpp] view plain copy print?
void Renderer::drawBatchedTriangles()
{
......
if (Configuration::getInstance()->supportsShareableVAO())
{
......}
else
{
......
// vertices
glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_POSITION, 3, GL_FLOAT, GL_FALSE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, vertices));
// colors
glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, colors));
// tex coords
glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_TEX_COORD, 2, GL_FLOAT, GL_FALSE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, texCoords));
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _buffersVBO[1]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(_indices[0]) * _filledIndex, _indices, GL_STATIC_DRAW);
}
......
}
void Renderer::drawBatchedTriangles() { ...... if (Configuration::getInstance()->supportsShareableVAO()) { ......} else { ...... // vertices glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_POSITION, 3, GL_FLOAT, GL_FALSE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, vertices)); // colors glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, colors)); // tex coords glVertexAttribPointer(GLProgram::VERTEX_ATTRIB_TEX_COORD, 2, GL_FLOAT, GL_FALSE, kQuadSize, (GLvoid*) offsetof(V3F_C4B_T2F, texCoords)); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _buffersVBO[1]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(_indices[0]) * _filledIndex, _indices, GL_STATIC_DRAW); } ...... }
能够看到该方法中调用了不少OpenGL的API,这些方法就是整个渲染流程最后进行渲染的环节。
好了,以上即是Cocos引擎的整个的渲染流程了。
最后用一个流程图对以上内容作一下总结,话说这张图我真的是很用心画的,改了好多遍最后优化到如今这个样子给你们看,但愿对你们有帮助:
以上。