Java13都要来了,你还不了解Java8的新(旧)特性?

Java现在的版本迭代速度简直不要太快,一不留神,就错过了好几个版本了。官方版本虽然已经更新到Java12了,可是就目前来讲,大多数Java系统仍是运行在Java8上的,剩下一部分历史遗留系统还跑在Java7,甚至Java6上。我刚学Java的时候,正好处于Java7版本末期,彼时已经有不少关于Java8新特性的风声,当时做为初学者,其实对此关注很少,只是依稀记得“lambda表达式”、“函数式编程”之类的,也不甚明白其中真意。真正大量应用Java8,大概是我工做一年以后的事情了,还记得当时是从IBM论坛上的一篇文章开始的。java

前几天和一位大学同窗聊天的时候,谈到了他们公司的一些问题,他们的系统是基于JDK7的版本,而且大部分员工不肯意升级版本,由于不肯意接受Java8的新特性。 我是以为很是惊讶的,都快Java13了,你还不肯意了解Java8的新(旧)特性?所以有了这篇文章,本文将结合通俗易懂的代码介绍Java8的lambda和stream相关的新(旧)特性,从中体会函数式编程的思想。编程

Lambda表达式

咱们能够简单认为lambda表达式就是匿名内部类的更简洁的语法糖。看下面两种线程建立方式,直观感觉一下。数组

// 匿名内部类
new Thread(new Runnable() {
    @Override
    public void run() {
        // ...
    }
}).start();

// lambda
new Thread(() -> {
    // ...
}).start();
复制代码

想要熟练使用lambda表达式,首先要了解函数式接口,那么什么是函数式接口呢?首先必须得是interface修饰的接口,而后接口有且只有一个待实现的方法。有个简单的方法能够区分函数式接口与普通接口,那就是在接口上添加@FunctionalInterface注解,若是不报错,那就是函数式接口,就可使用lambda表达式来代替匿名内部类了。看下面几个例子,很显然,A和B都是函数式接口,而C没有抽象方法,D不是接口,因此都不能使用lambda表达式。并发

// 是函数式接口
interface A {
    void test();
}

// 是函数式接口
interface B {
    default void def() {
        // balabala...
    }
    void test();
}

// 不是函数式接口
interface C {
    default void def() {}
}

// 不是函数式接口
abstract class D {
   public abstract void test();
}
复制代码

lambda表达式根据实现接口的方法参数、返回值、代码行数等,有几种不一样的写法:框架

  1. 无参数的
interface A {
    void test();
}

A a = () -> {
    // ...
};
复制代码
  1. 单个参数的
interface B {
    void test(String arg);
}

B b = arg -> {
    // ...
};
复制代码
  1. 多个参数的
interface C {
    void test(String arg1, String arg2);
}

C c = (a1, a2) -> {
    // ...
};

interface D {
    void test(String arg1, String arg2, String arg3);
}

D d = (a1, a2, a3) -> {
    // ...
};
复制代码
  1. 只有一行代码的,能够省略大括号
interface B {
    void test(String arg);
}

B b = arg -> System.out.println("hello " + arg);
复制代码
  1. 有返回值的
interface E {
    String get(int arg);
}

E e = arg -> {
    int r = arg * arg;
    return String.valueOf(r);
};
// 只有一行代码能够省略return和大括号
e = arg -> String.valueOf(arg * arg);
复制代码

有一点须要注意,lambda表达式和匿名内部类同样,都只能引用final修饰的外部的资源,虽然Java8中能够不用显示的声明变量为final的,可是在lambda表达式内部是不能修改的。分布式

int i = 0;
A a = () -> {
    i++; // 这里编译不经过
    // ...
};
复制代码

lambda表达式还有更加简便的写法,看下面代码,这个::符号是否是很熟悉啊?果真仍是脱离不了C体系的影响😆ide

class Math {
    int max(int x, int y) {
        return x < y ? y : x;
    }
    
    static int sum(int x, int y) {
        return x + y;
    }
}

interface Computer {
    int eval(int arg1, int arg2);
}


// 直接经过类名引用
Computer sumFun = Math::sum;
// 和上面是等价的
sumFun = (x, y) -> x + y;

Math math = new Math();
// 经过对象引用
Computer maxFun = math::max;
// 和上面是等价的
maxFun = (x, y) -> x < y ? y : x;

int sum = sumFun.eval(1, 2);
int max = maxFun.eval(2, 3);
复制代码

将上面的例子扩展一下,看下面的代码,体会一下函数式编程的思想。咱们把函数做为参数,在真正调用compute方法的时候,才肯定应该进行何种运算。函数式编程

class Biz {
    int x, y;
    Biz(int x, int y) {
        this.x = x;
        this.y = y;
    }
    int compute(Computer cpt) {
        // ...
        return cpt.eval(x, y);
    }
}
Biz biz = new Biz(1, 2);
int result = biz.compute((x, y) -> x * y);
result = biz.compute(Math::sum);
复制代码

内置函数式接口

Java8内置了不少函数式接口,所有放在java.util.function包下面,这些接口已经能知足平常开发中大部分的需求了,这些函数接口主要分为如下几类:函数

  1. 无返回值、有参数的 Consumer 类型
Consumer<String> consumer = str -> {
    // ...
};
BiConsumer<String, String> biConsumer = (left, right) -> {
    // ...
};
复制代码
  1. 有返回值、无参数的 Supplier 类型
Supplier<String> supplier = () -> {
    // ...
    return "hello word";
};
复制代码
  1. 有返回值、有参数的 Function 类型
Function<Integer, String> function = i -> {
    // ...
    return "hello word " + i;
};
BiFunction<Integer, Integer, String> biFunction = (m, n) -> {
    int s = m + n;
    return "sum = " + s;
};
复制代码
  1. 返回boolean、有参数的Predicate类型,能够看作是Function的一种特例
Predicate<String> predicate = str -> {
    // ...
    return str.charAt(0) == 'a';
};
BiPredicate<String, String> biPredicate = (left, right) -> {
    // ...
    return left.charAt(0) == right.charAt(0);
};
复制代码

集合类的Stream

Java8为集合框架添加了流式处理的功能,为咱们提供了一种很方便的处理集合数据的方式。
Stream大致上能够分为两种操做:中间操做和终端操做,这里先不考虑中间操做状态问题。中间操做能够有多个,可是终端操做只能有一个。中间操做通常是一些对流元素的附加操做,这些操做不会在添加中间操做的时候当即生效,只有当终端操做被添加时,才会开始启动整个流。并且流是不可复用的,一旦流启动了,就不能再为这个流附加任何终端操做了。工具

Stream的建立方式

流的建立方式大概有如下几种:

String[] array = 
Stream<String> stream;
// 1. 经过Stream的builder构建
stream = Stream.<String>builder()
        .add("1")
        .add("2")
        .build();

// 2. 经过Stream.of方法构建,这种方法能够用来处理数组
stream = Stream.of("1", "2", "3");

// 3. 经过Collection类的stream方法构建,这是经常使用的作法
Collection<String> list = Arrays.asList("1", "2", "3");
stream = list.stream();

// 4. 经过IntStream、LongStream、DoubleStream构建
IntStream intStream = IntStream.of(1, 2, 3);
LongStream longStream = LongStream.range(0L, 10L);
DoubleStream doubleStream = DoubleStream.of(1d, 2d, 3d);

// 5. 其实上面这些方法都是经过StreamSupport来构建的
stream = StreamSupport.stream(list.spliterator(), false);
复制代码
中间操做

若是你熟悉spark或者flink的话,就会发现,中间操做其实和spark、flink中的算子是同样的,连命名都是同样的,流在调用中间操做的方法是,并不会当即执行这个操做,会等到调用终端操做时,才会执行,下面例子中都添加了一个toArray的终端操做,把流转换为一个数组。

  1. filter操做,参数为Predicate,该操做会过滤掉数据流中断言结果为false的全部元素
// 将返回一个只包含大于1的元素的数组
// array = [2, 3]
Integer[] array = Stream.of(1, 2, 3)
                        .filter(i -> i > 1)
                        .toArray(Integer[]::new);
复制代码
  1. map操做,参数为Function,该操做会将数据流中元素都处理成新的元素,mapToInt、mapToLong、mapToDouble和map相似
// 将每一个元素都加10
// array = [11, 12, 13]
Integer[] array = Stream.of(1, 2, 3)
                        .map(i -> i + 10)
                        .toArray(Integer[]::new);
复制代码
  1. flatMap操做,参数为Function,不过Function返回值是个Stream,该操做和map同样,都会处理每一个元素,不一样的是map会将当前流中的一个元素处理成另外一个元素,而flatMap则是将当前流中的一个元素处理成多个元素,flatMapToInt、flatMapToDouble、flatMapToLong和flatMap相似。
// 把每一个元素都按","拆分,返回Stream
// array = ["1", "2", "3", "4", "5", "6"]
String[] array = Stream.of("1", "2,3", "4,5,6")
                       .flatMap(s -> {
                           String[] split = s.split(",");
                           return Stream.of(split);
                       })
                       .toArray(String[]::new);
复制代码
  1. peek操做,参数为Consumer,改操做会处理每一个元素,但不会返回新的对象。
Stream.of(new User("James", 40), new User("Kobe", 45), new User("Durante", 35))
      .peek(user -> {
          user.name += " NBA";
          user.age++;
      }).forEach(System.out::println);
// User(name=James NBA, age=41)
// User(name=Kobe NBA, age=46)
// User(name=Durante NBA, age=36)
复制代码
  1. distinct操做,很显然这是一个去重操做,会根据每一个元素的equals方法去重。
// array = [hello, hi]
String[] array = Stream.of("hello", "hi", "hello")
                       .distinct()
                       .toArray(String[]::new);
复制代码
  1. sorted操做,很显然这是个排序操做,若是使用无参数的sorted,则会先将元素转换成Comparable类型,若是不能转换会抛出异常。也能够传入一个比较器Comparator,而后会根据比较器的比较结果排序。
// 根据字符串长度排序
// sorted = [hi, haha, hello]
String[] sorted = Stream.of("hello", "hi", "haha")
                        .sorted(Comparator.comparingInt(String::length))
                        .toArray(String[]::new);
复制代码
  1. limit操做,参数是一个非负的long类型整数,该操做会截取流的前n个元素,若是参数n大于流的长度,就至关于什么都没作。
// 截取前三个
// array = [hello, hi, haha]
String[] array = Stream.of("hello", "hi", "haha", "heheda")
                       .limit(3)
                       .toArray(String[]::new);
复制代码
  1. skip操做,参数是一个非负的long类型整数,该操做会跳过流的前n个元素,若是参数n大于流的长度,就会跳过所有元素。
// 跳过前两个
// array = [haha, heheda]
String[] array = Stream.of("hello", "hi", "haha", "heheda")
                       .skip(2)
                       .toArray(String[]::new);
复制代码
终端操做

每一个流只能有一个终端操做,调用终端操做方法后,流才真正开始执行中间操做,通过多个中间操做的处理后,最终会在终端操做这里产生一个结果。

  1. forEach操做,参数为Consumer,这至关于一个简单的遍历操做,会遍历处理过的流中的每一个元素。
Stream.of("hello", "hi", "haha", "heheda")
      .limit(0)
      .forEach(s -> System.out.println(">>> " + s));
复制代码
  1. toArray操做,这个操做在上面的已经屡次提到了,该操做根据中间操做的处理结果,生成一个新的数组
// array = [hello, hi, haha, heheda]
Object[] array = Stream.of("hello", "hi", "haha", "heheda")
                       .toArray();
复制代码
  1. allMatch、anyMatch、noneMatch操做,都就接收一个Predicate,用于匹配查询
// b = false
boolean b = Stream.of("hello", "hi", "haha", "heheda")
                  .allMatch(s -> s.equals("hello"));
// b = true
b = Stream.of("hello", "hi", "haha", "heheda")
          .anyMatch(s -> s.equals("hello"));
// b = true
b = Stream.of("hello", "hi", "haha", "heheda")
          .noneMatch(s -> s.equals("nihao"));
复制代码
  1. findFirst、findAny操做,都会返回流中的一个元素,返回值使用Optional包装。
String first = Stream.of("hello", "hi", "haha", "heheda")
                     .findFirst().get();
first = Stream.of("hello", "hi", "haha", "heheda")
              .findAny().get();
复制代码
  1. reduce是比较复杂的一个操做,它有三个重载方法,单参数、双参数和三参数的。主要用来作累计运算的,不管哪一个重载方法都须要咱们提供一个双参数的BiFunction,这个BiFunction的第一个参数表示前面全部元素的累计值,第二个参数表示当前元素的值,咱们看几个例子。
// 拼接字符串
// reduceS ="hello ; hi ; haha ; heheda"
String reduceS = Stream.of("hello", "hi", "haha", "heheda")
                 .reduce((x, y) -> x + " ; " + y)
                 .get();

// 统计全部字符串的长度
// lenght = 17
int length = Stream.of("hello", "hi", "haha", "heheda")
                   .map(String::length)
                   .reduce(0, (x, y) -> x + y);

// 同上,不同的是,第三个参数是个合并器,用于并行流各个并行结果的合并
int reduce = Stream.of("hello", "hi", "haha", "heheda")
                   .reduce(0, (x, y) -> x + y.length(), (m, n) -> m + n);
复制代码
  1. max、min、count操做,这三个操做都比较简单,分别返回流中最大值、最小值和元素个数
// max = "heheda"
String max = Stream.of("hello", "hi", "haha", "heheda")
                   .max(Comparator.comparingInt(String::length))
                   .get();
// min = "hi"
String min = Stream.of("hello", "hi", "haha", "heheda")
                   .min(Comparator.comparingInt(String::length))
                   .get();
// count = 4
long count = Stream.of("hello", "hi", "haha", "heheda")
                   .count();
复制代码
  1. collect操做,这个操做相似于toArray,不过这里是把流转换成Collection或者Map。通常这个操做结合着Collectors工具类使用。看下面几个简单的例子:
// 转换为List [hello, hehe, hehe, hi, hi, hi]
List<String> list = Stream.of("hello", "hehe", "hehe", "hi", "hi", "hi")
                          .collect(Collectors.toList());
// 转换为Set [hi, hehe, hello]
Set<String> set = Stream.of("hello", "hehe", "hehe", "hi", "hi", "hi")
                        .collect(Collectors.toSet());
// 下面这个稍微复杂一些,实现了将字符串流转换为Map,map的key是字符串自己,value是字符串出现的次数
// map = {hi=3, hehe=2, hello=1}
Map<String, Integer> map = Stream.of("hello", "hehe", "hehe", "hi", "hi", "hi")
                                 .collect(Collectors.toMap(s -> {
                                     // 字符串做为map的key
                                     return s;
                                 }, s -> {
                                     // 1做为map的value
                                     return 1;
                                 }, (x, y) -> {
                                     // key相同时的合并操做
                                     return x + y;
                                 }, () -> {
                                     // 还能够指定Map的类型
                                     return new LinkedHashMap<>();
                                 }));
复制代码
单词统计的案例

最后,我将上面介绍的一些操做结合起来,经过一个单词统计的例子,让你们更直观的感觉流式处理的好处。

Path path = Paths.get("/Users/.../test.txt");
List<String> lines = Files.readAllLines(path);
lines.stream()
     .flatMap(line -> {
         String[] array = line.split("\\s+");
         return Stream.of(array);
     })
     .filter(w -> !w.isEmpty())
     .sorted()
     .collect(Collectors.toMap(w -> w, w -> 1,
                               (x, y) -> x + y,
                               LinkedHashMap::new))
     .forEach((k, v) -> System.out.println(k + " : " + v));
复制代码

遗憾的是Java8的Stream并不支持分组和聚合操做,因此这里使用了toMap方法来统计单词的数量。

Java8的集合类提供了parallelStream方法用于获取一个并行流(底层是基于ForkJoin作的),通常不推荐这么作,数据规模较小时使用并行Stream反而不如串行来的高效,而数据规模很大的时候,单机的计算能力毕竟有限,我仍是推荐使用更增强大的spark或者flink来作分布式计算。

至此,Java8关于lambda和Stream的特性就分析完毕了,固然Java8做为一个经典版本,确定不止于此,Doug Lea大佬的并发包也在Java8版本更新了很多内容,提供了更加丰富多彩的并发工具,还有新的time包等等,这些均可以拿出来做为一个新的的话题讨论。指望以后的文章中能和你们继续分享相关内容。

原创不易,转载请注明出处!www.yangxf.top/

相关文章
相关标签/搜索