adaboost原理和实现

上两篇说了决策树到集成学习的大概,这节我们通过adaboost来具体了解一下集成学习的简单做法。 集成学习有bagging和boosting两种不同的思路,bagging的代表是随机森林,boosting比较基础的adaboost,高级一点有GBDT,在这里我也说下我理解的这两个做法的核心区别: 随机森林的bagging是采用有放回抽样得到n个训练集,每个训练集都会有重复的样本,每个训练集数据都一
相关文章
相关标签/搜索