机器学习算法常用指标总结

机器学习性能评价标准是模型优化的前提,在设计机器学习算法过程中,不同的问题需要用到不同的评价标准,本文对机器学习算法常用指标进行了总结。 阅读目录 1. TPR、FPR&TNR 2. 精确率Precision、召回率Recall和F1值 3. 综合评价指标F-measure 4. ROC曲线和AUC 5. 参考内容   考虑一个二分问题,即将实例分成正类(positive)或负类(negative
相关文章
相关标签/搜索