【深度学习】波尔次曼机,受限波尔兹曼机,DBN详解

神经网络自20世纪50年代发展起来后,因其良好的非线性能力、泛化能力而备受关注。然而,传统的神经网络仍存在一些局限,在上个世纪90年代陷入衰落,主要有以下几个原因: 1、传统的神经网络一般都是单隐层,最多两个隐层,因为一旦神经元个数太多、隐层太多,模型的参数数量迅速增长,模型训练的时间非常之久; 2、传统的神经网络,随着层数的增加,采用随机梯度下降的话一般很难找到最优解,容易陷入局部最优解。在反向
相关文章
相关标签/搜索