论文浅尝 | 可建模语义分层的知识图谱补全方法

本文转载自公众号:PaperWeekly。 论文作者:蔡健宇,中国科学技术大学,研究方向:知识图谱 近些年,知识图谱(Knowledge Graph)在自然语言处理、问答系统、推荐系统等诸多领域取得了广泛且成功的应用。然而,现有知识图谱普遍存在链接缺失问题。为解决该问题,知识图谱补全任务应运而生。目前的知识图谱补全模型可分为多个流派,而基于距离的模型是其中重要一派。这类模型可以建模对称、互逆与复合
相关文章
相关标签/搜索