感知机与BP神经网络10-01

一、感知机 1、感知机的原理 感知机是二分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,分别取+1+1和−1−1二值。感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型。 感知机只适合于线性可分的数据,所以它是一个线性模型。假设训练数据集是线性可分的,感知机学习的目标是求得一个能够将训练数据集正实例点和负实例点完全正确分开的分离超平面。如果是非线性可分的
相关文章
相关标签/搜索