最近在项目中,涉及到对行为和状态进行建模的需求,尝试用有限状态机(Finite-state machine, FSM)来实现。python
基于对有限状态机的粗浅理解,大致的运行机制为:ide
能够认为有限状态机是一个离散系统,每接受一次输入,进行一次判断和切换。code
一个有限状态机包含以下几个要素:orm
状态:系统所处的状态,在运行过程当中又能够分为当前状态和下一阶段状态;blog
事件:也能够理解为每一次运行的输入;继承
条件:根据输入事件执行的断定条件,条件是基于状态的,当前所处的每一种状态,均可以有本身对应的一套断定条件,来决定下一步进入哪种状态;事件
动做:肯定切换路径后,执行的附加操做。ci
以一个共3种状态的FSM为例,共有3套断定条件,根据当前所处的状态来肯定使用哪种断定条件,共有3*3=9种动做,决定每一种状态切换过程当中须要执行的动做。input
一般能够用一个表格来对所处理的FSM进行分析,防止状况的遗漏。it
在表格中分析清楚每一种状态切换的断定条件和执行动做,再用代码实现,能够最大程度地减轻思考的难度,减小错误的几率。
以OOP的方式,作了一个基础的Python实现。
FSM基类:
class StateMachine: def __init__(self, cfg, states, events_handler, actions_handler): # config information for an instance self.cfg = cfg # define the states and the initial state self.states = [s.lower() for s in states] self.state = self.states[0] # process the inputs according to current state self.events = dict() # actions according to current transfer self.actions = {state: dict() for state in self.states} # cached data for temporary use self.records = dict() # add events and actions for i, state in enumerate(self.states): self._add_event(state, events_handler[i]) for j, n_state in enumerate(self.states): self._add_action(state, n_state, actions_handler[i][j]) def _add_event(self, state, handler): self.events[state] = handler def _add_action(self, cur_state, next_state, handler): self.actions[cur_state][next_state] = handler def run(self, inputs): # decide the state-transfer according to the inputs new_state, outputs = self.events[self.state](inputs, self.states, self.records, self.cfg) # do the actions related with the transfer self.actions[self.state][new_state](outputs, self.records, self.cfg) # do the state transfer self.state = new_state return new_state def reset(self): self.state = self.states[0] self.records = dict() return # handlers for events and actions, event_X and action_XX are all specific functions events_handlers = [event_A, event_B] actions_handlers = [[action_AA, action_AB], [action_BA, action_BB]] # define an instance of StateMachine state_machine = StateMachine(cfg, states, events_handlers, actions_handlers)
若是对于状态机有具体的要求,能够继承这个基类进行派生。
好比,有对状态机分层嵌套的需求。
class StateGeneral(StateMachine): def __init__(self, cfg, states): super(StateGeneral, self).__init__(cfg, states, events_handler, actions_handler) self.sub_state_machines = dict() def add_sub_fsm(self, name, fsm): self.sub_state_machines[name] = fsm def run(self, inputs): new_state, outputs = self.events[self.state](inputs, self.states, self.records, self.cfg) # operate the sub_state_machines in actions self.actions[self.state][new_state](outputs, self.records, self.cfg, \ self.sub_state_machines) self.state = new_state return new_state def reset(self): self.state = self.states[0] self.records = dict() for _, sub_fsm in self.sub_state_machines.items(): sub_fsm.reset() return