HTML5中手势原理分析与数学知识的实践

HTML5中手势原理分析与数学知识的实践

引言

在这触控屏的时代,人性化的手势操做已经深刻了咱们生活的每一个部分。现代应用愈来愈重视与用户的交互及体验,手势是最直接且最为有效的交互方式,一个好的手势交互,能下降用户的使用成本和流程,大大提升了用户的体验。css

近期,公司的多个项目中都对手势有着较高的需求,已有的手势库没法彻底cover,所以便撸了一个轻量、便于使用的移动端手势库。这篇博文主要是解析了移动端经常使用手势的原理,及从前端的角度学习过程当中所使用的数学知识。但愿能对你们有一点点的启发做用,也期待大神们指出不足甚至错误,感恩。html

主要讲解项目中常用到的五种手势:前端

  • 拖动: drag
  • 双指缩放: pinch
  • 双指旋转: rotate
  • 单指缩放: singlePinch
  • 单指旋转: singleRotate
Tips :
由于 tapswipe 不少基础库中包含,为了轻便,所以并无包含,但若是须要,可进行扩展;

实现原理

众所周知,全部的手势都是基于浏览器原生事件touchstart, touchmove, touchend, touchcancel进行的上层封装,所以封装的思路是经过一个个相互独立的事件回调仓库handleBus,而后在原生touch事件中符合条件的时机触发并传出计算后的参数值,完成手势的操做。实现原理较为简单清晰,先不急,咱们先来理清一些使用到的数学概念并结合代码,将数学运用到实际问题中,数学部分可能会比较枯燥,但但愿你们坚持读完,相信会收益良多。css3

基础数学知识函数

咱们常见的坐标系属于线性空间,或称向量空间(Vector Space)。这个空间是一个由点(Point) 和 向量(Vector) 所组成集合;git

点(Point)

能够理解为咱们的坐标点,例如原点O(0,0),A(-1,2),经过原生事件对象的touches能够获取触摸点的坐标,参数index表明第几接触点;github

图片描述

向量(Vector)

是坐标系中一种 既有大小也有方向的线段,例如由原点O(0,0)指向点A(1,1)的箭头线段,称为向量a,则a=(1-0,1-0)=(1,1);web

以下图所示,其中ij向量称为该坐标系的单位向量,也称为基向量,咱们常见的坐标系单位为1,即i=(1,0);j=(0,1)canvas

图片描述

获取向量的函数:api

图片描述

向量模

表明 向量的长度,记为|a|,是一个标量,只有大小,没有方向;浏览器

几何意义表明的是以x,y为直角边的直角三角形的斜边,经过勾股定理进行计算;

图片描述

getLength函数:

图片描述

向量的数量积

向量一样也具备能够运算的属性,它能够进行加、减、乘、数量积和向量积等运算,接下来就介绍下咱们使用到的数量积这个概念,也称为点积,被定义为公式:

当a=(x1,y1),b=(x2,y2),则a·b=|a|·|b|·cosθ=x1·x2+y1·y2;

共线定理

共线,即两个向量处于 平行 的状态,当a=(x1,y1),b=(x2,y2),则存在惟一的一个实数λ,使得a=λb,代入坐标点后,能够获得 x1·y2= y1·x2;

所以当x1·y2-x2·y1>0 时,既斜率 ka > kb ,因此此时b向量相对于a向量是属于顺时针旋转,反之,则为逆时针;

旋转角度

经过数量积公式咱们能够推到求出两个向量的夹角:

cosθ=(x1·x2+y1·y2)/(|a|·|b|);

而后经过共线定理咱们能够判断出旋转的方向,函数定义为:

图片描述

矩阵与变换

因为空间最本质的特征就是其能够容纳运动,所以在线性空间中,

咱们用向量来刻画对象,而矩阵即是用来描述对象的运动;

而矩阵是如何描述运动的呢?

咱们知道,经过一个坐标系基向量即可以肯定一个向量,例如 a=(-1,2),咱们一般约定的基向量是 i = (1,0) 与 j = (0,1); 所以:

a = -1i + 2j = -1 (1,0) + 2(0,1) = (-1+0,0+2) = (-1,2);

而矩阵变换的,其实即是经过矩阵转换了基向量,从而完成了向量的变换;

例如上面的栗子,把a向量经过矩阵(1,2,3,0)进行变换,此时基向量i(1,0)变换成(1,-2)j(0,1)变换成(3,0),沿用上面的推导,则

a = -1i + 2j = -1(1,-2) + 2(3,0) = (5,2);

以下图所示:
A图表示变换以前的坐标系,此时a=(-1,2),经过矩阵变换后,基向量i,j的变换引发了坐标系的变换,变成了下图B,所以a向量由(-1,2)变换成了(5,2)

其实向量与坐标系的关联不变( a = -1i+2j),是基向量引发坐标系变化,而后坐标系沿用关联致使了向量的变化;

图片描述

结合代码

其实CSS的transform等变换即是经过矩阵进行的,咱们平时所写的translate/rotate等语法相似于一种封装好的语法糖,便于快捷使用,而在底层都会被转换成矩阵的形式。例如transform:translate(-30px,-30px)编译后会被转换成transform : matrix(1,0,0,1,30,30);

一般在二维坐标系中,只须要 2X2 的矩阵便足以描述全部的变换了, 但因为CSS是处于3D环境中的,所以CSS中使用的是 3X3 的矩阵,表示为:

图片描述

其中第三行的0,0,1表明的就是z轴的默认参数。这个矩阵中,(a,b) 即为坐标轴的 i基,而(c,d)既为j基,ex轴的偏移量,fy轴的偏移量;所以上栗便很好理解,translate并无致使i,j基改变,只是发生了偏移,所以translate(-30px,-30px) ==> matrix(1,0,0,1,30,30)~

全部的transform语句,都会发生对应的转换,以下:

// 发生偏移,但基向量不变;
transform:translate(x,y) ==> transform:matrix(1,0,0,1,x,y)

// 基向量旋转;
transform:rotate(θdeg)==> transform:matrix(cos(θ·π/180),sin(θ·π/180),-sin(θ·π/180),cos(θ·π/180),0,0)

// 基向量放大且方向不变;
transform:scale(s) ==> transform:matrix(s,0,0,s,0,0)

translate/rotate/scale等语法十分强大,让咱们的代码更为可读且方便书写,可是matrix有着更强大的转换特性,经过matrix,能够发生任何方式的变换,例如咱们常见的镜像对称transform:matrix(-1,0,0,1,0,0);

图片描述

MatrixTo

然而matrix虽然强大,但可读性却很差,并且咱们的写入是经过translate/rotate/scale的属性,然而经过getComputedStyle读取到的 transform倒是matrix:

transform:matrix(1.41421, 1.41421, -1.41421, 1.41421, -50, -50);

请问这个元素发生了怎么样的变化?。。这就一脸懵逼了。-_-|||

所以,咱们必需要有个方法,来将matrix翻译成咱们更为熟悉的translate/rotate/scale方式,在理解了其原理后,咱们即可以着手开始表演咯~

咱们知道,前4个参数会同时受到rotatescale的影响,具备两个变量,所以须要经过前两个参数根据上面的转换方式列出两个不等式:

cos(θ·π/180)*s=1.41421;

sin(θ·π/180)*s=1.41421;

将两个不等式相除,便可以轻松求出θs了,perfect!!函数以下:

图片描述

手势原理

接下来咱们将上面的函数用到实际环境中,经过图示的方式来模拟手势的操做,简要地讲解手势计算的原理。但愿各位大神理解这些基础的原理后,能创造出更多炫酷的手势,像咱们在mac触控板上使用的同样。

下面图例:

圆点: 表明手指的触碰点;

两个圆点之间的虚线段: 表明双指操做时组成的向量;

a向量/A点:表明在 touchstart 时获取的初始向量/初始点;

b向量/B点:表明在 touchmove 时获取的实时向量/实时点;

坐标轴底部的公式表明须要计算的值;

Drag(拖动事件)

图片描述

上图是模拟了拖动手势,由A点移动到B点,咱们要计算的即是这个过程的偏移量;

所以咱们在touchstart中记录初始点A的坐标:

// 获取初始点A;
let startPoint = getPoint(ev,0);

而后在touchmove事件中获取当前点并实时的计算出△x△y

// 实时获取初始点B;
let curPoint = getPoint(ev,0);

// 经过A、B两点,实时的计算出位移增量,触发 drag 事件并传出参数;
_eventFire('drag', {
    delta: {
        deltaX: curPoint.x - startPoint.x,
        deltaY: curPoint.y - startPoint.y,
    },
    origin: ev,
});
Tips: fire函数即遍历执行 drag事件对应的回调仓库便可;

Pinch(双指缩放)

图片描述

上图是双指缩放的模拟图,双指由a向量放大到b向量,经过初始状态时的a向量的模与touchmove中获取的b向量的模进行计算,即可得出缩放值:

// touchstart中计算初始双指的向量模;
let vector1 = getVector(secondPoint, startPoint);
let pinchStartLength = getLength(vector1);

// touchmove中计算实时的双指向量模;
let vector2 = getVector(curSecPoint, curPoint);
let pinchLength = getLength(vector2);
this._eventFire('pinch', {
    delta: {
        scale: pinchLength / pinchStartLength,
    },
    origin: ev,
});

Rotate(双指旋转)

图片描述

初始时双指向量a,旋转到b向量,θ即是咱们须要的值,所以只要经过咱们上面构建的getAngle函数,即可求出旋转的角度:

// a向量;
let vector1 = getVector(secondPoint, startPoint);

// b向量;
let vector2 = getVector(curSecPoint, curPoint);

// 触发事件;
this._eventFire('rotate', {
    delta: {
        rotate: getAngle(vector1, vector2),
    },
    origin: ev,
});

singlePinch(单指缩放)

图片描述

与上面的手势不一样,单指缩放和单指旋转都须要多个特有概念:

操做元素( operator):须要操做的元素。上面三个手势其实并不关心操做元素,由于单纯靠手势自身,便能计算得出正确的参数值,而单指缩放和旋转须要依赖于操做元素的基准点(操做元素的中心点)进行计算;

按钮:由于单指的手势与拖动(drag)手势是相互冲突的,须要一种特殊的交互方式来进行区分,这里是经过特定的区域来区分,相似于一个按钮,当在按钮上操做时,是单指缩放或者旋转,而在按钮区域外,则是常规的拖动,实践证实,这是一个用户很容易接受且体验较好的操做方式;

图中由a向量单指放大到b向量,对操做元(正方形)素进行了中心放大,此时缩放值即为b向量的模 / a向量的模;

// 计算单指操做时的基准点,获取operator的中心点;
let singleBasePoint = getBasePoint(operator);

// touchstart 中计算初始向量模;
let pinchV1 = getVector(startPoint,singleBasePoint);
singlePinchStartLength = getLength(pinchV1);

// touchmove 中计算实时向量模;
pinchV2 = getVector(curPoint, singleBasePoint);
singlePinchLength = getLength(pinchV2);

// 触发事件;
this._eventFire('singlePinch', {
    delta: {
        scale: singlePinchLength / singlePinchStartLength,
    },
    origin: ev,
});

singleRotate(单指旋转)

图片描述

结合单指缩放和双指旋转,能够很简单的知道 θ即是咱们须要的旋转角度;

// 获取初始向量与实时向量
let rotateV1 = getVector(startPoint, singleBasePoint);
let rotateV2 = getVector(curPoint, singleBasePoint);

// 经过 getAngle 获取旋转角度并触发事件;
this._eventFire('singleRotate', {
    delta: {
        rotate: getAngle(rotateV1, rotateV2),
    },
    origin: ev,
});

运动增量

因为touchmove事件是个高频率的实时触发事件,一个拖动操做,其实触发了N次的touchmove事件,所以计算出来的值只是一种增量,即表明的是一次 touchmove事件增长的值,只表明一段很小的值,并非最终的结果值,所以须要由mtouch.js外部维护一个位置数据,相似于:

//    真实位置数据;
let dragTrans = {x = 0,y = 0};

// 累加上 mtouch 所传递出的增量 deltaX 与 deltaY;
dragTrans.x += ev.delta.deltaX;
dragTrans.y += ev.delta.deltaY;

// 经过 transform 直接操做元素;
set($drag,dragTrans);

初始位置

维护外部的这个位置数据,若是初始值像上述那样直接取0,则遇到使用css设置了transform属性的元素便没法正确识别了,会致使操做元素开始时瞬间跳回(0,0)的点,所以咱们须要初始去获取一个元素真实的位置值,再进行维护与操做。此时,便须要用到上面咱们提到的getComputedStyle方法与matrixTo函数:

// 获取css transform属性,此时获得的是一个矩阵数据;
// transform:matrix(1.41421,1.41421,-1.41421,1.41421,-50,-50);
let style = window.getComputedStyle(el,null);
let cssTrans = style.transform || style.webkitTransform;

// 按规则进行转换,获得:
let initTrans = _.matrixTo(cssTrans);

// {x:-50,y:-50,scale:2,rotate:45};
// 即该元素设置了:transform:translate(-50px,-50px) scale(2) rotate(45deg);

结语

至此,相信你们对手势的原理已经有基础的了解,基于这些原理,咱们能够再封装出更多的手势,例如双击,长按,扫动,甚至更酷炫的三指、四指操做等,让应用拥有更多人性化的特质。

基于以上原理,我封装了几个常见的工具:(求star -.-)

Tips: 由于只针对移动端,需在移动设备中打开 demo,或者pc端开启mobile调试模式!
  1. mtouch.js : 移动端的手势库,封装了上述的五种手势,精简的api设计,涵盖了常见的手势交互,基于此也能够很方便的进行扩展。

demo
github

  1. touchkit.js : 基于mtouch所封装的一层更贴近业务的工具包,可用于制做多种手势操做业务,一键开启,一站式服务。

demo
github

  1. mcanvas.js : 基于canvas 开放极简的api实现图片<段落文字> <混排文字> <裁剪> <平移> <旋转> <缩放> <水印添加> 一键导出等。

demo
github

致谢

相关文章
相关标签/搜索