机器学习中的数学(四):线性回归,偏差、方差权衡

前言 机器学习绝对不是一个一个孤立的算法堆砌起来的,想要像看《算法导论》这样看机器学习是个不可取的方法,机器学习里面有几个东西一直贯穿全书,比如说数据的分布、最大似然(以及求极值的几个方法,不过这个比较数学了),偏差、方差的权衡,还有特征选择,模型选择,混合模型等等知识,这些知识像砖头、水泥一样构成了机器学习里面的一个个的算法。想要真正学好这些算法,一定要静下心来将这些基础知识弄清楚,才能够真正理
相关文章
相关标签/搜索