JavaShuo
栏目
标签
车辆检测“Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monoc”
时间 2020-12-23
栏目
系统网络
繁體版
原文
原文链接
Deep Many Task,同时进行车辆检测,部件定位,可视化特征描述及3D维度估计。基于coarse-to-fine的目标proposal结构提升检测性能。Deep MANTA可以定位不可见的车辆部位。 应用 3D车辆定位和方向估计可用于估计车辆速度和方向。 论文第一个贡献是使用车辆特征点编码3D车辆信息,车辆是刚性的,可通过回归的方法预测隐藏的部分。结合3D数据集,将3D点投影到2D图像中的
>>阅读原文<<
相关文章
1.
车辆2D/3D--Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis
2.
论文阅读:Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis
3.
3D车辆检测 | Deep MANTA 算法笔记
4.
车辆检测--A Closer Look at Faster R-CNN for Vehicle Detection
5.
车辆检索“LEARNING A REPRESSION NETWORK FOR PRECISE VEHICLE SEARCH”
6.
3d fully convolutional network for vehicle detection in point cloud
7.
论文:Deep MANTA
8.
Vehicle Detection from 3D Lidar Using Fully Convolutional Network解析(3D-CNN模型)
9.
【3D 目标检测】2019 CVPR Learning 2D to 3D Lifting for Object Detection in 3D for Autonomous Vehicles
10.
Joint 3D Proposal Generation and Object Detection from View Aggregation论文学习
更多相关文章...
•
使用TCP协议检测防火墙
-
TCP/IP教程
•
Scala for循环
-
Scala教程
•
RxJava操作符(七)Conditional and Boolean
•
TiDB 在摩拜单车在线数据业务的应用和实践
相关标签/搜索
3d&2d
车辆
analysis
vehicle
FPN车辆目标检测
network
joint
2d+gis+3d
deep
检测
系统网络
Spring教程
PHP 7 新特性
MySQL教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
[最佳实践]了解 Eolinker 如何助力远程办公
2.
katalon studio 安装教程
3.
精通hibernate(harness hibernate oreilly)中的一个”错误“
4.
ECharts立体圆柱型
5.
零拷贝总结
6.
6 传输层
7.
Github协作图想
8.
Cannot load 32-bit SWT libraries on 64-bit JVM
9.
IntelliJ IDEA 找其历史版本
10.
Unity3D(二)游戏对象及组件
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
车辆2D/3D--Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis
2.
论文阅读:Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis
3.
3D车辆检测 | Deep MANTA 算法笔记
4.
车辆检测--A Closer Look at Faster R-CNN for Vehicle Detection
5.
车辆检索“LEARNING A REPRESSION NETWORK FOR PRECISE VEHICLE SEARCH”
6.
3d fully convolutional network for vehicle detection in point cloud
7.
论文:Deep MANTA
8.
Vehicle Detection from 3D Lidar Using Fully Convolutional Network解析(3D-CNN模型)
9.
【3D 目标检测】2019 CVPR Learning 2D to 3D Lifting for Object Detection in 3D for Autonomous Vehicles
10.
Joint 3D Proposal Generation and Object Detection from View Aggregation论文学习
>>更多相关文章<<