进程:程序的一次执行(程序载入内存,系统分配资源运行)。每一个进程有本身的内存空间,数据栈等,进程之间能够进行通信,可是不能共享信息。python
线程:全部的线程运行在同一个进程中,共享相同的运行环境。每一个独立的线程有一个程序入口,顺序执行序列和程序的出口。windows
线程的运行能够被强占,中断或者暂时被挂起(睡眠),让其余的线程运行。一个进程中的各个线程共享同一片数据空间。多线程
import threading def thread_job(): print "this is added thread,number is {}".format(threading.current_thread()) def main(): added_thread = threading.Thread(target = thread_job) #添加线程 added_thread.start() #执行添加的线程 print threading.active_count() #当前已被激活的线程的数目 print threading.enumerate() #激活的是哪些线程 print threading.current_thread() #正在运行的是哪些线程 if __name__ == "__main__": main()
this is added thread,number is <Thread(Thread-6, started 6244)>6 [<HistorySavingThread(IPythonHistorySavingThread, started 7588)>, <ParentPollerWindows(Thread-3, started daemon 3364)>, <Heartbeat(Thread-5, started daemon 3056)>, <_MainThread(MainThread, started 1528)>, <Thread(Thread-6, started 6244)>, <Thread(Thread-4, started daemon 4700)>] <_MainThread(MainThread, started 1528)>
#join 功能 等到线程执行完以后 再回到主线程中去 import threading import time def T1_job(): print "T1 start\n" for i in range(10): time.sleep(0.1) print "T1 finish" def T2_job(): print 'T2 start' print 'T2 finish' def main(): thread1 = threading.Thread(target = T1_job) #添加线程 thread2 = threading.Thread(target = T2_job) thread1.start() #执行添加的线程 thread2.start() thread1.join() thread2.join() print 'all done\n' if __name__ == "__main__": main() T1 start T2 start T2 finish T1 finish all done
#queue 多线程各个线程的运算的值放到一个队列中,到主线程的时候再拿出来,以此来代替 #return的功能,由于在线程是不能返回一个值的 import time import threading from Queue import Queue def job(l,q): q.put([i**2 for i in l]) def multithreading(data): q = Queue() threads = [] for i in xrange(4): t = threading.Thread(target = job,args = (data[i],q)) t.start() threads.append(t) for thread in threads: thread.join() results = [] for _ in range(4): results.append(q.get()) print results if __name__ == "__main__": data = [[1,2,3],[4,5,6],[3,4,3],[5,5,5]] multithreading(data) [[1, 4, 9], [16, 25, 36], [9, 16, 9], [25, 25, 25]]
#多线程的锁
import threading
import time
def T1_job():
global A,lock
lock.acquire()
for i in xrange(10):
A += 1
print 'T1_job',A
lock.release()
def T2_job():
global A,lock
lock.acquire()
for i in xrange(10):
A += 10
print 'T2_job',A
lock.release()
if __name__ == "__main__":
lock = threading.Lock()
A = 0 #全局变量
thread1 = threading.Thread(target = T1_job) #添加线程
thread2 = threading.Thread(target = T2_job)
thread1.start() #执行添加的线程
thread2.start()
thread1.join()
thread2.join()
GIL并非Python的特性,他是CPython引入的概念,是一个全局排他锁。app
同一时刻一个解释进程只有一行bytecode 在执行async
#python中 多线程的效率不必定就是 3 个线程就 三倍的效率 #在python中有GIL,线程锁,保证只有一个线程在计算,在不停的切换 #因此 若是是不一样的任务,任务之间差异很大,线程之间能够分工合做,能够提升效率,如一个发送消息,另外一个接收消息。 #若是处理一大堆的数据,多线程帮不上,须要mutliprocessing 由于每一个核有单独的逻辑空间,互相不影响 import time import threading from Queue import Queue def job(l,q): q.put(sum(l)) def normal(l): print sum(l) def multithreading(l): q = Queue() threads = [] for i in range(3): t = threading.Thread(target = job,args = (l,q),name = 'T{}'.format(i)) t.start() threads.append(t) [t.join() for t in threads] total = 0 for _ in range(3): total += q.get() print total if __name__ == '__main__': l = list(xrange(1000000)) s_t = time.time() normal(l*3) print 'normal time:',time.time()-s_t s_t = time.time() multithreading(l) print 'multithreading time:',time.time() -s_t 1499998500000 normal time: 0.297999858856 1499998500000 multithreading time: 0.25200009346
multiprocessing库弥补了thread库由于GIL而低效的缺陷。完整的复制了一套thread所提供的接口方便迁移,惟一的不一样就是他使用了多进程而不是多线程。每一个进程都有本身独立的GIL。可是在windows下多进程的开销要比多线程要大好多,Linux下是差很少的。多进程更加稳定,ui
multiprocessing Process类表明一个进程对象。this
import multiprocessing as mp import threading as td import time def job(q): res = 0 for i in range(100000): res += i + i **2 q.put(res) def normal(): res = 0 for i in range(100000): res += i + i **2 print 'normal:',res def multithread(): q = mp.Queue() #这里用多进程的queue没问题的 t1 = td.Thread(target = job,args = (q,)) # t2 = td.Thread(target = job(q,)) t1.start() # t2.start() t1.join() # t2.join() res1 = q.get() # res2 = q.get() print 'thread:',res1 def multiprocess(): q = mp.Queue() p1 = mp.Process(target = job,args = (q,)) # p2 = mp.Process(target = job(q,)) p1.start() # p2.start() p1.join() # p2.join() res1 = q.get() # res2 = q.get() print 'multiprocess:',res1 if __name__ == '__main__': st = time.time() normal() st1 = time.time() print 'normal time:',st1 - st multithread() st2 = time.time() print 'thread:',st2 - st1 multiprocess() print 'process:',time.time() - st2
#进程池 ,Pool中是有return的 import multiprocessing as mp def job(x): return x**2 def multiprocess(): pool = mp.Pool() #默认是有几个核就用几个,能够本身设置processes = ? res = pool.map(job,range(10)) #能够放入可迭代对象,自动分配进程 print res res = pool.apply_async(job,(2,)) #一次只能在一个进程里计算,要达到map的效果,要迭代 print res.get() multi_res = [pool.apply_async(job,(i,)) for i in range(10)] #迭代器 print ([res.get() for res in multi_res]) if __name__ == '__main__': multiprocess()
#多进程中的global的全局变量 分给不一样的cpu,难以交流 #使用 shared memory 进行交流 import multiprocessing as mp value = mp.Value('d',1) #d就是double,i是一个signed int array = mp.Array('i',[1,3,4]) #只是个一维的而已 ,和numpy的不同
#锁 import multiprocessing as mp import time def job(v,num,l): l.acquire() for i in range(10): time.sleep(0.1) v.value += num print v.value l.release() def multiprocess(): v = mp.Value('i',0) #共享内存 l = mp.Lock() q = mp.Queue() p1 = mp.Process(target = job,args = (v,1,l)) p2 = mp.Process(target = job,args = (v,3,l)) p1.start() p2.start() p1.join() p2.join() if __name__ == '__main__': multiprocess()
fork操做:调用一次,返回两次。操做系统自动把当前进程复制一份,分布在父进程和子进程中返回,子进程永远返回0,父进程永远返回子进程的ID。子进程getppid()就能够拿到父进程的ID ,getpid()能够得到当前进程的ID。spa