通俗地说逻辑回归【Logistic regression】算法(一)

在说逻辑回归前,仍是得提一提他的兄弟,线性回归。在某些地方,逻辑回归算法和线性回归算法是相似的。但它和线性回归最大的不一样在于,逻辑回归是做用是分类的。html

还记得以前说的吗,线性回归其实就是求出一条拟合空间中全部点的线。逻辑回归的本质其实也和线性回归同样,但它加了一个步骤,逻辑回归使用sigmoid函数转换线性回归的输出以返回几率值,而后能够将几率值映射到两个或更多个离散类。java

若是给出学生的成绩,比较线性回归和逻辑回归的不一样以下:算法

  • 线性回归能够帮助咱们以0-100的等级预测学生的测试分数。线性回归预测是连续的(某个范围内的数字)。
  • Logistic回归能够帮助预测学生是否经过。逻辑回归预测是离散的(仅容许特定值或类别)。咱们还能够查看模型分类背后的几率值。

一.从回归到分类的核心 --Sigmoid Function

以前介绍线性回归的时候,它的函数是这样样子的:编程

h(x)=θ0 + θ1 * x1 + θ2 * x2 + θ3 * x3 ...函数式编程

但这样的函数是没办法进行分类的工做的,因此咱们要借助一下其余函数,那就是Sigmoid Function。函数

咱们先来看看这个Sigmoid Function长什么样,Sigmoid Function的数学公式是这样子的:oop

Sigmoid函数

若是表示在平面坐标轴上呢,那它长这个样子。
Sigmoid函数的坐标轴测试

这个Sigmoid Function能够将线性的值,映射到[0-1]这个范围中。若是映射结果小于0.5,则认为是负的样本,若是是大于0.5,则认为是正的样本。大数据

比方说要对垃圾邮箱进行分类,分垃圾邮箱和正常邮箱。当这个Sigmoid Function的计算出来后,小于0.5,则认为是垃圾邮箱,大于0.5则是非垃圾邮箱。htm

原先线性回归的计算公式是这样的:
线性回归公式

那么将这个z函数代入到Sigmoid Function中,OK,如今咱们就有了一个逻辑回归的函数了。

逻辑回归的公式

二.代价函数Cost Function

和线性回归同样,逻辑回归也有代价函数。而且都是经过最小化Cost Function来求得最终解的。

咱们先来看单个点的状况,
代价函数

这个代价函数呢,叫作交叉熵,其中y(i)指的是预测的结果,而hθ(xi)指的是xi这个点本来的值。

那么它具体是什么意思呢,为何叫作交叉熵?咱们举两个极端的例子看看就明白了:

1.xi原始值hθ=1,预测结果,yi=1的状况

极端状况下的Sigmoid函数1

这个时候,代价函数的加号右边会被消掉,由于右边(1-y(i))是0,左边部分呢,由于hθ(xi)=1,故而log(1)=0。

y(i)log(hθ(xi)) = 1 * log(0) = 0

也就是说,若xi原始值是1,当预测值y=1的时候,代价函数是0的。这个也比较好理解,代价函数为0就是说预测结果和原始结果彻底一致的,没有半点出差错。

2.计算结果,yi=0,原始值hθ=0

极端状况下的Sigmoid函数2

此次的结果就和上面的反过来了,由于yi=0,因此左边部分全军覆没,来看右边,

(1-yi) * log(1-hθ(xi)) = 1 * log(0) = 0

由于1-hθ(xi),最终结果仍是等于0。

也就是说,这个损失函数,只要原始值与预测结果越相符,损失函数就越大,反之,损失函数就会越小。

以上说的只是一个点的状况,实际的代价函数,是要计算全部点的损失函数的均值,以下所示:

变换的损失函数

三.梯度降低

和线性回归同样,逻辑回归的解法也能够经过梯度降低来进行求解。梯度降低的目的,是为了最小化代价函数Cost function。

要求使用梯度降低,须要先求解偏导数,如下是求导数的一个具体过程:
求导过程

而梯度降低的计算方法也和线性回归的计算方法是同样的。只是其中的代价函数,换成了逻辑回归的代价函数。

其中,α右边部分对应咱们上面对代价函数求偏导的结果。而α是用来控制训练速率的,这个在线性回归那里已经有说到,这里就再也不介绍了。

最终就是对θj不断迭代,直到损失函数降到最小,那就能够求出咱们要的θ值了。

四.小结

OK,今天介绍了线性回归和逻辑回归的区别,一样都是回归分析,逻辑回归能完成分类任何的核心,就算使用了Sigmoid Function。

这里留一个小问题,上面所述的逻辑回归,一般是仅仅可以进行二分类,那有没有办法来让逻辑回归实现多分类呢?

下一次将阐述用逻辑回归进行多分类,以及正则化相关内容,并介绍sklearn的逻辑回归参数和用法!!

以上~~


推荐阅读:
通俗得说线性回归算法(一)线性回归初步介绍
通俗得说线性回归算法(二)线性回归初步介绍
Scala 函数式编程指南(一) 函数式思想介绍
通俗地说决策树算法(二)实例解析
大数据存储的进化史 --从 RAID 到 Hadoop Hdfs
C,java,Python,这些名字背后的江湖!

相关文章
相关标签/搜索