JavaShuo
栏目
标签
[MICCAI2019] Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-M
时间 2021-01-02
栏目
HTML
繁體版
原文
原文链接
Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver Segmentation 作者:Junlin Yang,yale Intro CT便宜快速,但有辐射且对比度低;MRI对比度高,无辐射,但成本高,不易得到。在实际治疗中,CT和MRI都需要,且需要对
>>阅读原文<<
相关文章
1.
[MICCAI2019]Unsupervised Domain Adaptation via Disentangled Representations
2.
Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver
3.
【论文笔记】Unsupervised Domain-Specific Deblurring via Disentangled Representations
4.
[论文笔记]Unsupervised Domain-Specific Deblurring via Disentangled Representations(CVPR2019)
5.
[MICCAI2019]Data Efficient Unsupervised Domain Adaptation For Cross-modality Image Segmentation
6.
A DIRT-T APPROACH TO UNSUPERVISED DOMAIN ADAPTATION
7.
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
8.
Re-weighted adversarial adaptation network for unsupervised domain adaptation
9.
Geodesic flow kernel for unsupervised domain adaptation
10.
Unsupervised Domain Adaptation by Backpropagation(2015)
更多相关文章...
•
ASP Application 对象
-
ASP 教程
•
ASP Application 对象
-
ASP 教程
•
使用阿里云OSS+CDN部署前端页面与加速静态资源
•
Tomcat学习笔记(史上最全tomcat学习笔记)
相关标签/搜索
representations
adaptation
unsupervised
domain
application
iframe+domain
to@8
application@icon
to......443
8.application
HTML
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
IDEA 2019.2解读:性能更好,体验更优!
2.
使用云效搭建前端代码仓库管理,构建与部署
3.
Windows本地SVN服务器创建用户和版本库使用
4.
Sqli-labs-Less-46(笔记)
5.
Docker真正的入门
6.
vue面试知识点
7.
改变jre目录之后要做的修改
8.
2019.2.23VScode的c++配置详细方法
9.
从零开始OpenCV遇到的问题一
10.
创建动画剪辑
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
[MICCAI2019]Unsupervised Domain Adaptation via Disentangled Representations
2.
Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver
3.
【论文笔记】Unsupervised Domain-Specific Deblurring via Disentangled Representations
4.
[论文笔记]Unsupervised Domain-Specific Deblurring via Disentangled Representations(CVPR2019)
5.
[MICCAI2019]Data Efficient Unsupervised Domain Adaptation For Cross-modality Image Segmentation
6.
A DIRT-T APPROACH TO UNSUPERVISED DOMAIN ADAPTATION
7.
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
8.
Re-weighted adversarial adaptation network for unsupervised domain adaptation
9.
Geodesic flow kernel for unsupervised domain adaptation
10.
Unsupervised Domain Adaptation by Backpropagation(2015)
>>更多相关文章<<