144.Binary Tree Preorder Traversal---二叉树先序、中序非递归遍历

题目连接数组

题目大意:返回二叉树的先序遍历list。中序见94,后序见145。ide

法一:普通递归遍历,只是这里多了一个list数组,因此分红了两个函数。代码以下(耗时1ms):函数

 1     public List<Integer> preorderTraversal(TreeNode root) {
 2         List<Integer> list = new ArrayList<Integer>();
 3         list = dfs(root, list);
 4         return list;
 5     }
 6     public static List<Integer> dfs(TreeNode root, List<Integer> list) {
 7         if(root == null) {
 8             return list;
 9         }
10         else {
11             list.add(root.val);
12             list = dfs(root.left, list);
13             list = dfs(root.right, list);
14             return list;
15         }
16     }
View Code

法二(借鉴):先序非递归。代码以下(耗时1ms):spa

 1     public List<Integer> preorderTraversal(TreeNode root) {
 2         Stack<TreeNode> stack = new Stack<TreeNode>();
 3         TreeNode tmp = root;
 4         List<Integer> list = new ArrayList<Integer>();
 5         while(tmp != null || !stack.isEmpty()) {
 6             //将全部左孩子压栈,直到没有左孩子,而且因为是先序遍历,因此在压左孩子的时候就放入结果list中
 7             while(tmp != null) {
 8                 list.add(tmp.val);
 9                 stack.push(tmp);
10                 tmp = tmp.left;
11             }
12             //若是左孩子压完了,就访问右孩子
13             if(!stack.isEmpty()) {
14                 tmp = stack.pop();
15                 tmp = tmp.right;
16             }
17         }
18         return list;
19     }
View Code

 

中序非递归3d

 1     public List<Integer> inorderTraversal(TreeNode root) {
 2         List<Integer> list = new ArrayList<Integer>();
 3         Stack<TreeNode> stack = new Stack<TreeNode>();
 4         TreeNode tmp = root;
 5         while(tmp != null || !stack.isEmpty()) {
 6             while(tmp != null) {
 7                 stack.push(tmp);
 8                 tmp = tmp.left;
 9             }
10             //与先序不一样的是,在弹出时放入结果list
11             if(!stack.isEmpty()) {
12                 tmp = stack.pop();
13                 list.add(tmp.val);
14                 tmp = tmp.right;
15             }
16         }
17         return list;
18     }
View Code
相关文章
相关标签/搜索