机器学习之——多类分类问题

在之前的博客中,我们讨论了逻辑回归模型(Logistic Regression)解决分类问题。但是我们发现,逻辑回归模型解决的是二分问题,即:模型的结果只有两个值,y=0 or y=1 。但是在现实情境下,我们的训练集往往包含多个类(>2),我们就无法用一个二元变量(y=0|y=1)来做判断依据了。举个例子,我们预测天气,天气的情况就分为:晴天、阴天、雨天、多云、雪天、雾天等等。 下面是一个多类分
相关文章
相关标签/搜索